Finding AGN remnant candidates based on radio morphology with machine learning

Author:

Mostert Rafaël I. J.ORCID,Morganti Raffaella,Brienza Marisa,Duncan Kenneth J.,Oei Martijn S. S. L.,Röttgering Huub J. A.,Alegre Lara,Hardcastle Martin J.,Jurlin Nika

Abstract

Context. Remnant radio galaxies represent the dying phase of radio-loud active galactic nuclei (AGN). Large samples of remnant radio galaxies are important for quantifying the radio-galaxy life cycle. The remnants of radio-loud AGN can be identified in radio sky surveys based on their spectral index, and identifications can be confirmed through visual inspection based on their radio morphology. However, this latter confirmation process is extremely time-consuming when applied to the new large and sensitive radio surveys. Aims. Here, we aim to reduce the amount of visual inspection required to find AGN remnants based on their morphology using supervised machine learning trained on an existing sample of remnant candidates. Methods. For a dataset of 4107 radio sources with angular sizes of larger than 60 arcsec from the LOw Frequency ARray (LOFAR) Two-Metre Sky Survey second data release (LoTSS-DR2), we started with 151 radio sources that were visually classified as ‘AGN remnant candidate’. We derived a wide range of morphological features for all radio sources from their corresponding Stokes-I images: from simple source-catalogue-derived properties to clustered Haralick-features and self-organising-map(SOM)-derived morphological features. We trained a random forest classifier to separate the AGN remnant candidates from the yet-to-be inspected sources. Results. The SOM-derived features and the total-to-peak flux ratio of a source are shown to have the greatest influence on the classifier. For each source, our classifier outputs a positive prediction, if it believes the source to be a likely AGN remnant candidate, or a negative prediction. The positive predictions of our model include all initially inspected AGN remnant candidates, plus a number of yet-to-be inspected sources. We estimate that 31 ± 5% of sources with positive predictions from our classifier will be labelled AGN remnant candidates upon visual inspection, while we estimate the upper bound of the 95% confidence interval for AGN remnant candidates in the negative predictions to be 8%. Visual inspection of just the positive predictions reduces the number of radio sources requiring visual inspection by 73%. Conclusions. This work shows the usefulness of SOM-derived morphological features and source-catalogue-derived properties in capturing the morphology of AGN remnant candidates. The dataset and method outlined in this work bring us closer to the automatic identification of AGN remnant candidates based on radio morphology alone and the method can be used in similar projects that require automatic morphology-based classification in conjunction with small labelled sample sizes.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3