New rotation period measurements of 67 163 Kepler stars

Author:

Reinhold TimoORCID,Shapiro Alexander I.ORCID,Solanki Sami K.ORCID,Basri GiborORCID

Abstract

Context. The Kepler space telescope leaves a legacy of tens of thousands of stellar rotation period measurements. While many of these stars show strong periodicity, there is an even bigger fraction of stars with irregular variability for which rotation periods are rarely visible or in most cases unknown. As a consequence, many studies of stellar activity might be strongly biased toward the behavior of more active stars, for which rotation periods have been determined. Aims. With the goal to at least partially lift this bias, we apply a new method capable of determining rotation periods of stars with irregular light curve variability. This effort greatly increases the number of stars with well-determined periods, especially for stars with small variabilities similar to that of the Sun. Methods. We employed a novel method based on the gradient of the power spectrum (GPS). The maximum of the gradient corresponds to the position of the inflection point (IP), namely, the point where the curvature of the high-frequency tail of the power spectrum changes its sign. Previously, it was shown that the stellar rotation period, Prot, is linked to the inflection point period, PIP, by the simple equation Prot = PIP/α, where α is a calibration factor. The GPS method is superior to classical methods (such as auto-correlation functions (ACF)) because it does not require a repeatable variability pattern in the time series, making it an ideal tool for detecting periods of stars with very short-lived spots. Results. From the initial sample of 142 168 stars with effective temperatures Teff < 6500 K and log g > 4.0 in the Kepler archive, we could measure rotation periods for 67 163 stars by combining the GPS and the ACF method. We further report the first determination of a rotation period for 20 397 stars. The GPS periods show good agreement with previous period measurements using classical methods, when available. Furthermore, we show that the scaling factor a increases for very cool stars with effective temperatures below 4000 K, which we interpret as spots located at higher latitudes. Conclusions. We conclude that new techniques, such as the GPS method, ought to be applied in detecting the rotation periods of stars with small and more irregular variabilities. Ignoring these stars will distort the overall picture of stellar activity, particular with respect to solar-stellar comparison studies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3