New X-ray detections of magnetic period-bounce cataclysmic variables from XMM-Newton and SRG/eROSITA

Author:

Muñoz-Giraldo Daniela,Stelzer Beate,de Martino Domitilla,Schwope Axel

Abstract

Context. A great portion of the cataclysmic variable population, between 40% and 70%, is predicted to be made up of period-bouncers, systems with degenerate donors that have evolved past the period minimum. However, due to their intrinsic faintness, only a few of these systems have been observed and confidently identified so far. Aims. We have searched for X-ray emission as proof of accretion in order to confirm period-bounce cataclysmic variables. Methods. In this study, we used data from XMM-Newton and eROSITA on a pilot sample of three period-bounce candidates with a magnetic white dwarf, which are expected to exhibit stronger X-ray emission than non-magnetic systems due to more efficient conversion of matter accretion onto the white dwarf. Results. In a dedicated XMM-Newton observation of the period-bounce candidate SDSS J151415.65+074446.5 we discovered X-ray modulation at the binary orbital period confirming it as an accreting system. The X-ray light curve and the X-ray spectrum display characteristics of magnetic Polar-type systems, allowing us for the first time to determine the X-ray luminosity and mass accretion rate for this system. Catalog data from eROSITA on the Spektrum-Roentgen-Gamma satellite for V379 Vir and SDSS J125044.42+154957.4 enabled a first look into the X-ray behavior of period-bounce candidates with this new all-sky instrument. From the eROSITA measurements, the X-ray luminosity and mass accretion rate were determined for the first time for SDSS J125044.42+154957.4, and the earlier result for V379 Vir from XMM-Newton was confirmed. Conclusions. The three cataclysmic variables with a magnetic white dwarf and very low-mass donor studied in this work present evidence for X-ray emission at a similar level of LX [erg s−1] ≈ 1029, which, together with the detection of X-ray orbital modulation in two of them (i.e., V379 Vir and SDSS J151415.65+074446.5), unambiguously proves the presence of accretion in these systems. The detection of these period-bouncers at faint X-ray luminosity levels with the all-sky X-ray survey eROSITA offers new prospects for the identification of additional period-bouncers, providing impetus for theoretical studies of binary evolution.

Funder

Deutsche Forschungsgemeinschaft

Agenzia Spaziale Italiana

Istituto Nazionale di Astrofisica

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3