Diffuse emission in microlensed quasars and its implications for accretion-disk physics

Author:

Fian C.ORCID,Chelouche D.,Kaspi S.

Abstract

Aims. We investigate the discrepancy between the predicted size of accretion disks (ADs) in quasars and the observed sizes as deduced from gravitational microlensing studies. Specifically, we aim to understand whether the discrepancy is due to an inadequacy of current AD models or whether it can be accounted for by the contribution of diffuse broad-line region (BLR) emission to the observed continuum signal. Methods. We employed state-of-the-art emission models for quasars and high-resolution microlensing magnification maps and compared the attributes of their magnification-distribution functions to those obtained for pure Shakura-Sunyaev disk models. We tested the validity of our detailed model predictions by examining their agreement with published microlensing estimates of the half-light radius of the continuum-emitting region in a sample of lensed quasars. Results. Our findings suggest that the steep disk temperature profiles found by microlensing studies are erroneous as the data are largely affected by the BLR, which does not obey a temperature-wavelength relation. We show with a sample of 12 lenses that the mere contribution of the BLR to the continuum signal is able to account for the deduced overestimation factors as well as the implied size-wavelength relation. Conclusions. Our study points to a likely solution to the AD size conundrum in lensed quasars, which is related to the interpretation of the observed signals rather than to disk physics. Our findings significantly weaken the tension between AD theory and observations, and suggest that microlensing can provide a new means to probe the hitherto poorly constrained diffuse BLR emission around accreting black holes.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3