Circular ribbon flare triggered from an incomplete fan-spine configuration

Author:

Mitra Prabir K.ORCID,Veronig Astrid M.,Joshi BhuwanORCID

Abstract

Context. Circular ribbon flares are characterised by circular, semi-circular, or elliptical ribbon brightenings. As the physics of such solar events involves a true 3D magnetic topology, they have been extensively studied in contemporary solar research. Aims. In order to understand the triggering processes and the complex magnetic topology involved in circular ribbon flares, we carried out a thorough investigation of an M-class circular ribbon flare that originated within close proximity of a quasi-separatrix layer (QSL). Methods. We combined multi-wavelength Atmospheric Imaging Assembly (AIA) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations with photospheric Helioseismic and Magnetic Imager (HMI) observations and coronal magnetic field modelling analysis using the non-linear force free field (NLFFF) model. Results. The circular ribbon flare occurred from a complex magnetic configuration characterised by negative magnetic patches surrounded by positive-polarity regions on three sides. As the negative polarity patches were not surrounded by positive-polarity regions on all four sides, the corresponding coronal field was devoid of any null points. This led to the formation of an incomplete fan-spine-like configuration that deviated from classical fan-spine configurations in null-point topology. Further, an observationally identified QSL structure was situated within the active region, very close to the flaring region. The presence of the QSL was verified by the NLFFF modelling. The far end of the spine-like lines terminated very close to one footpoint location of the QSL lines. Our analysis suggests that activities at this location led to the activation of a flux rope situated within the fan-like lines and triggering of the circular ribbon flare via perturbation of the overall fan-spine-like structure. Further, we identified RHESSI X-ray sources from the footpoints of the QSL structure, which suggests that slipping reconnections can also lead to discernible signatures of particle acceleration.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3