Euclid preparation

Author:

,Schirmer M.ORCID,Thürmer K.,Bras B.,Cropper M.,Martin-Fleitas J.,Goueffon Y.,Kohley R.,Mora A.,Portaluppi M.,Racca G. D.,Short A. D.,Szmolka S.,Venancio L. M. Gaspar,Altmann M.,Balog Z.,Bastian U.,Biermann M.,Busonero D.,Fabricius C.,Grupp F.,Jordi C.,Löffler W.,Sellés A. Sagristà,Aghanim N.,Amara A.,Amendola L.,Baldi M.,Bodendorf C.,Bonino D.,Branchini E.,Brescia M.,Brinchmann J.,Camera S.,Candini G. P.,Capobianco V.,Carbone C.,Carretero J.,Castellano M.,Cavuoti S.,Cimatti A.,Cledassou R.,Congedo G.,Conselice C. J.,Conversi L.,Copin Y.,Corcione L.,Courbin F.,Da Silva A.,Degaudenzi H.,Di Giorgio A. M.,Dinis J.,Dubath F.,Dupac X.,Dusini S.,Farrens S.,Ferriol S.,Frailis M.,Franceschi E.,Fumana M.,Galeotta S.,Garilli B.,Gillard W.,Gillis B.,Giocoli C.,Haugan S. V. H.,Hoekstra H.,Holmes W.,Hormuth F.,Hornstrup A.,Jahnke K.,Kermiche S.,Kiessling A.,Kilbinger M.,Kitching T.,Kunz M.,Kurki-Suonio H.,Ligori S.,Lilje P. B.,Lloro I.,Maiorano E.,Mansutti O.,Marggraf O.,Markovic K.,Marulli F.,Massey R.,Medinaceli E.,Mei S.,Mellier Y.,Meneghetti M.,Merlin E.,Meylan G.,Moresco M.,Moscardini L.,Munari E.,Nakajima R.,Niemi S.-M.,Nightingale J. W.,Nutma T.,Padilla C.,Paltani S.,Pasian F.,Pettorino V.,Pires S.,Polenta G.,Poncet M.,Popa L. A.,Raison F.,Renzi A.,Rhodes J.,Riccio G.,Romelli E.,Roncarelli M.,Rossetti E.,Saglia R.,Sapone D.,Sartoris B.,Schneider P.,Secroun A.,Seidel G.,Serrano S.,Sirignano C.,Sirri G.,Skottfelt J.,Stanco L.,Tallada-Crespí P.,Taylor A. N.,Tereno I.,Toledo-Moreo R.,Tutusaus I.,Valentijn E. A.,Valenziano L.,Vassallo T.,Wang Y.,Weller J.,Zacchei A.,Zoubian J.,Andreon S.,Bardelli S.,Battaglia P.,Bozzo E.,Colodro-Conde C.,Farina M.,Graciá-Carpio J.,Keihänen E.,Lindholm V.,Maino D.,Mauri N.,Morisset N.,Scottez V.,Tenti M.,Zucca E.,Akrami Y.,Baccigalupi C.,Ballardini M.,Biviano A.,Blanchard A.,Borlaff A. S.,Burigana C.,Cabanac R.,Cappi A.,Carvalho C. S.,Casas S.,Castignani G.,Castro T.,Chambers K. C.,Cooray A. R.,Coupon J.,Courtois H. M.,Cuby J.-G.,Davini S.,De Lucia G.,Desprez G.,Di Domizio S.,Dole H.,Escartin J. A.,Escoffier S.,Ferrero I.,Gabarra L.,Ganga K.,Garcia-Bellido J.,George K.,Giacomini F.,Gozaliasl G.,Hildebrandt H.,Kajava J. J. E.,Kansal V.,Kirkpatrick C. C.,Legrand L.,Liebing P.,Loureiro A.,Maggio G.,Magliocchetti M.,Mainetti G.,Maoli R.,Marcin S.,Martinelli M.,Martinet N.,Martins C. J. A. P.,Matthew S.,Maturi M.,Maurin L.,Metcalf R. B.,Monaco P.,Morgante G.,Nadathur S.,Nucita A. A.,Patrizii L.,Pollack J. E.,Popa V.,Potter D.,Pöntinen M.,Sánchez A. G.,Sakr Z.,Schneider A.,Sereno M.,Shulevski A.,Simon P.,Steinwagner J.,Teyssier R.,Valiviita J.

Abstract

Material outgassing in a vacuum leads to molecular contamination, a well-known problem in spaceflight. Water is the most common contaminant in cryogenic spacecraft, altering numerous properties of optical systems. Too much ice means that Euclid’s calibration requirements cannot be met anymore. Euclid must then be thermally decontaminated, which is a month-long risky operation. We need to understand how ice affects our data to build adequate calibration and survey plans. A comprehensive analysis in the context of an astrophysical space survey has not been done before. In this paper we look at other spacecraft with well-documented outgassing records. We then review the formation of thin ice films, and find that for Euclid a mix of amorphous and crystalline ices is expected. Their surface topography – and thus optical properties – depend on the competing energetic needs of the substrate-water and the water-water interfaces, and they are hard to predict with current theories. We illustrate that with scanning-tunnelling and atomic-force microscope images of thin ice films. Sophisticated tools exist to compute contamination rates, and we must understand their underlying physical principles and uncertainties. We find considerable knowledge errors on the diffusion and sublimation coefficients, limiting the accuracy of outgassing estimates. We developed a water transport model to compute contamination rates in Euclid, and find agreement with industry estimates within the uncertainties. Tests of the Euclid flight hardware in space simulators did not pick up significant contamination signals, but they were also not geared towards this purpose; our in-flight calibration observations will be much more sensitive. To derive a calibration and decontamination strategy, we need to understand the link between the amount of ice in the optics and its effect on the data. There is little research about this, possibly because other spacecraft can decontaminate more easily, quenching the need for a deeper understanding. In our second paper, we quantify the impact of iced optics on Euclid’s data.

Funder

Deutsches Zentrum fuer Luft- und Raumfahrt

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference201 articles.

1. Flux and composition of interstellar dust at Saturn from Cassini’s Cosmic Dust Analyzer

2. New estimates for the sublimation rate for ice on the Moon

3. Baggett S., & Gonzaga S. 1998, WFPC2 Long-Term Photometric Stability, Space Telescope WFPC2 Instrument Science Report

4. Baggett S., Sparks W., Ritchie C., & MacKenty J. 1996, Contamination Correction in SYNPHOT for WFPC-2 and WF/PC-1, Space Telescope WFPC2 Instrument Science Report

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spacecraft Outgassing Observed by the BepiColombo Ion Spectrometers;Journal of Geophysical Research: Space Physics;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3