Study of a sample of faint Be stars in the exofield of CoRoT

Author:

Zorec J.ORCID,Hubert A. M.,Martayan C.,Frémat Y.ORCID

Abstract

Context. The search and interpretation of non-radial pulsations from Be star light curves observed with the CoRoT satellite requires high-quality stellar astrophysical parameters. Aims. The present work is devoted to the spectroscopic study of a sample of faint Be stars observed by CoRoT in the fourth long run (LRA02). Methods. The astrophysical parameters were determined from the spectra in the λλ4000–4500 Å wavelength domain observed with the VLT/FLAMES instruments at ESO. Spectra were fitted with models of stellar atmospheres using our GIRFIT package. Spectra obtained in the λλ6400–7200 Å wavelength domain enabled the confirmation or, otherwise, a first identification of Be star candidates. Results. The apparent parameters (Teff, log g, Vsin i) for a set of 19 B and Be stars were corrected for the effects induced by the rapid rotation. These allowed us to determine: (1) stellar masses that are in agreement with those measured for detached binary systems; (2) spectroscopic distances that agree with the Gaia parallaxes; and (3) centrifugal/gravity equatorial force ratios of ~0.6–0.7, which indicate that our Be stars are subcritical rotators. A study of the Balmer Hα, Hγ and Hδ emission lines produced: (1) extents of the circumstellar disk (CD) emitting regions that agree with the interferometric inferences in other Be stars; (2) R– dependent exponents n(R) = ln[ρ(R)/ρo]/ln(Ro/R) of the CD radial density distributions; and (3) CD base densities ρo similar to those inferred in other recent works. Conclusions. The Hγ and Hδ emission lines are formed in CD layers close to the central star. These lines produced a different value of the exponent n(R) than assumed for Hα. Further detailed studies of Hγ and Hδ emission lines could reveal the physical properties of regions where the viscous transport of angular momentum to the remaining CD regions is likely to originate from. The subcritical rotation of Be stars suggests that their huge discrete mass-ejections and concomitant non-radial pulsations might have a common origin in stellar envelope regions that become unstable to convection due to rotation. If it is proven that the studied Be stars are products of binary mass transfer phases, the errors induced on the estimated Teff by the presence of stripped sub-dwarf O/B companions are not likely to exceed their present uncertainties.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3