How much large dust could be present in hot exozodiacal dust systems?

Author:

Stuber T. A.ORCID,Kirchschlager F.ORCID,Pearce T. D.ORCID,Ertel S.ORCID,Krivov A. V.,Wolf S.ORCID

Abstract

Context. An infrared excess over the stellar photospheric emission of main-sequence stars has been found in interferometric surveys, commonly attributed to the presence of hot exozodiacal dust (HEZD). While submicrometer-sized grains in close vicinity to their host star have been inferred to be responsible for the found near-infrared excesses, the presence and amount of larger grains as part of the dust distributions are weakly constrained. Aims. We quantify how many larger grains (above-micrometer-sized) could be present in addition to submicrometer-sized grains, while being consistent with observational constraints. This is important in order to distinguish between various scenarios for the origin of HEZD and to better estimate its observational appearance when observed with future instruments. Methods. We extended a model suitable to reproduce current observations of HEZD to investigate a bimodal size distribution. By deriving the characteristics of dust distributions whose observables are consistent with observational limits from interferometric measurements in the K and N bands we constrained the radii of sub- and above-micrometer-sized grains as well as their mass, number, and flux density ratios. Results. In the most extreme cases of some of the investigated systems, large grains ≳10 µm might dominate the mass budget of HEZD while contributing up to 25 % of the total flux density originating from the dust at a wavelength of 2.13 µm and up to 50 % at a wavelength of 4.1 µm; at a wavelength of 11.1 µm their emission might clearly dominate over the emission of small grains. While it is not possible to detect such hot-dust distributions using ALMA, the ngVLA might allow us to detect HEZD at millimeter wavelengths. Conclusions. Large dust grains (above-micrometer-sized) might have a more important impact on the observational appearance of HEZD than previously assumed, especially at longer wavelengths.

Funder

DFG

ERC

NASA

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3