GA-NIFS: A massive black hole in a low-metallicity AGN at z ∼ 5.55 revealed by JWST/NIRSpec IFS

Author:

Übler Hannah,Maiolino Roberto,Curtis-Lake Emma,Pérez-González Pablo G.,Curti Mirko,Perna Michele,Arribas Santiago,Charlot Stéphane,Marshall Madeline A.,D’Eugenio Francesco,Scholtz Jan,Bunker Andrew,Carniani Stefano,Ferruit Pierre,Jakobsen Peter,Rix Hans-Walter,Rodríguez Del Pino Bruno,Willott Chris J.,Boeker Torsten,Cresci Giovanni,Jones Gareth C.,Kumari Nimisha,Rawle Tim

Abstract

We present rest-frame optical data of the compact z = 5.55 galaxy GS_3073 obtained using the integral field spectroscopy mode of the Near-InfraRed Spectrograph on board the James Webb Space Telescope. The galaxy’s prominent broad components in several hydrogen and helium lines (though absent in the forbidden lines) and v detection of a large equivalent width of He IIλ4686, EW(He II) ∼20 Å, unambiguously identify it as an active galactic nucleus (AGN). We measured a gas phase metallicity of Zgas/Z∼0.21−0.04+0.08 , which is lower than what has been inferred for both more luminous AGN at a similar redshift and lower redshift AGN. We empirically show that classical emission line ratio diagnostic diagrams cannot be used to distinguish between the primary ionisation source (AGN or star formation) for systems with such low metallicity, though different diagnostic diagrams involving He IIλ4686 prove very useful, independent of metallicity. We measured the central black hole mass to be log(MBH/M)∼8.2 ± 0.4 based on the luminosity and width of the broad line region of the Hα emission. While this places GS_3073 at the lower end of known high-redshift black hole masses, it still appears to be overly massive when compared to its host galaxy’s mass properties. We detected an outflow with a projected velocity ≳700 km s−1 and inferred an ionised gas mass outflow rate of about 100 M yr−1, suggesting that one billion years after the Big Bang, GS_3073 is able to enrich the intergalactic medium with metals.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3