Self-consistent propagation of flux ropes in realistic coronal simulations

Author:

Linan L.ORCID,Regnault F.ORCID,Perri B.ORCID,Brchnelova M.ORCID,Kuzma B.,Lani A.ORCID,Poedts S.,Schmieder B.ORCID

Abstract

Context.The text has been edited to adhere to American English based on the spelling style used in the text. In order to anticipate the geoeffectiveness of coronal mass ejections (CMEs), heliospheric simulations are used to propagate transient structures injected at 0.1 AU. Without direct measurements near the Sun, the properties of these injected CMEs must be derived from models coming from observations or numerical simulations, and thus they contain a lot of uncertainty.Aims.The aim of this paper is to demonstrate the possible use of the new coronal model COCONUT to compute a detailed representation of a numerical CME at 0.1 AU after its injection at the solar surface and propagation in a realistic solar wind, as derived from observed magnetograms.Methods.We present the implementation and propagation of modified Titov-Démoulin flux ropes in the COCONUT 3D magnetohydrodynamics coronal model. Background solar wind was reconstructed in order to model two opposite configurations representing a solar activity maximum and minimum, respectively. Both configurations were derived from magnetograms that were obtained by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory satellite. We tracked the propagation of 24 flux ropes that differ only by their initial magnetic flux. In particular, we investigated the geometry of the flux ropes during the early stages of their propagation as well as the influence of their initial parameters and solar wind configuration on 1D profiles derived at 0.1 AU.Results.At the beginning of the propagation, the shape of the flux ropes varied between simulations during low and high solar activity. We found dynamics that are consistent with the standard CME model, such as pinching of the CME legs and the appearance of post-flare loops. Despite the differences in geometry, the synthetic density and magnetic field time profiles at 0.1 AU are very similar in both solar wind configurations. These profiles are also similar to those observed further in the heliosphere and suggest the presence of a magnetic ejecta composed of the initially implemented flux rope and a sheath ahead of it. Finally, we uncovered relationships between the properties of the magnetic ejecta, such as relationships between density or speed and the initial magnetic flux of our flux ropes.Conclusions.The implementation of the modified Titov-Démoulin flux rope in COCONUT enables us to retrieve the major properties of CMEs at 0.1 AU for any phase of the solar cycle. When combined with heliospheric simulations, COCONUT could lead to more realistic and self-consistent CME evolution models and thus more reliable predictions.

Funder

European Union’s Horizon 2020 research and innovation programme

AFOSR basic research initiative project

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3