Into nonlinearity and beyond for Zernike-like wavefront sensors

Author:

Haffert S. Y.ORCID

Abstract

Context. Telescopes like the Extremely Large Telescope (ELT) and the Giant Magellan Telescope (GMT) will be used together with extreme adaptive optics (AO) instruments to directly image Earth-like planets. The AO systems will need to perform at the fundamental limit in order to image Earth twins. A crucial component is the wavefront sensor. Interferometric wavefront sensors, such as the Zernike wavefront sensor (ZWFS), have been shown to perform close to the fundamental sensitivity limit. However, sensitivity comes at the cost of linearity; the ZWFS has strong nonlinear behavior. Aims. The aim of this work is to increase the dynamic range of Zernike-like wavefront sensors by using nonlinear reconstruction algorithms combined with phase sorting interferometry (PSI) and multi-wavelength measurements. Methods. The response of the ZWFS is explored analytically and numerically. Results. The proposed iterative (non)linear reconstructors reach the machine precision for small aberrations (<0.25 rad rms). Coupling the nonlinear reconstruction algorithm with PSI increases the dynamic range of the ZWFS by a factor of three to about 0.75 rad rms. Adding multiple wavebands doubles the dynamic range again, to 1.4 radians rms. Conclusions. The ZWFS is one of the most sensitive wavefront sensors, but has a limited dynamic range. The ZWFS will be an ideal second-stage wavefront sensor if it is combined with the proposed nonlinear reconstruction algorithm.

Funder

NASA

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3