High-contrast detection of exoplanets with a kernel-nuller at the VLTI

Author:

Chingaipe Peter MarleyORCID,Martinache Frantz,Cvetojevic Nick,Ligi Roxanne,Mary David,N’Diaye Mamadou,Defrère Denis,Ireland Michael J.

Abstract

Context. The conventional approach to direct imaging is to use a single aperture coronagraph with wavefront correction via extreme adaptive optics (AO). Such systems are limited to observing beyond an inner working angle (IWA) of a few λ/D. Nulling interferometry with two or more apertures will enable detections of companions at separations at and beyond the formal diffraction limit. Aims. In this paper, we evaluate the astrophysical potential of a kernel-nuller as the prime high-contrast imaging mode of the Very Large Telescope Interferometer (VLTI). Methods. By taking into account baseline projection effects induced by Earth rotation, we introduce some diversity in the response of the nuller as a function of time. This response is depicted by transmission maps. We also determine whether we can extract the astrometric parameters of a companion from the kernel outputs, which are the primary intended observable quantities of the kernel-nuller. This then leads us to comment on the characteristics of a possible observing program for the discovery of exoplanets. Results. We present transmission maps for both the raw nuller outputs and their subsequent kernel outputs. To further examine the properties of the kernel-nuller, we introduce maps of the absolute value of the kernel output. We also identify 38 targets for the direct detection of exoplanets with a kernel-nuller at the focus of the VLTI. Conclusions. With continued upgrades of the VLTI infrastructure, which will reduce fringe tracking residuals, a kernel-nuller would enable the detection of young giant exoplanets at separations <10 AU, where radial velocity and transit methods are more sensitive.

Funder

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3