Scope and limitations of ad hoc neural network reconstructions of solar wind parameters

Author:

Hecht MaximilianORCID,Heidrich-Meisner VerenaORCID,Berger Lars,Wimmer-Schweingruber Robert F.ORCID

Abstract

Context.Solar wind properties are determined by the conditions of their solar source region and transport history. Solar wind parameters, such as proton speed, proton density, proton temperature, magnetic field strength, and the charge state composition of oxygen, are used as proxies to investigate the solar source region of the solar wind. The solar source region of the solar wind is relevant to both the interaction of this latter with the Earth’s magnetosphere and to our understanding of the underlying plasma processes, but the effect of the transport history of the wind is also important. The transport and conditions in the solar source region affect several solar wind parameters simultaneously. Therefore, the typically considered solar wind properties (e.g., proton density and oxygen charge-state composition) carry redundant information. Here, we are interested in exploring this redundancy.Aims.The observed redundancy could be caused by a set of hidden variables that determine the solar wind properties. We test this assumption by determining how well a (arbitrary, non-linear) function of four of the selected solar wind parameters can model the fifth solar wind parameter. If such a function provided a perfect model, then this solar wind parameter would be uniquely determined from hidden variables of the other four parameters and would therefore be redundant. If no reconstruction were possible, this parameter would be likely to contain information unique to the parameters evaluated here. In addition, isolating redundant or unique information contained in these properties guides requirements for in situ measurements and development of computer models. Sufficiently accurate measurements are necessary to understand the solar wind and its origin, to meaningfully classify solar wind types, and to predict space weather effects.Methods.We employed a neural network as a function approximator to model unknown, arbitrary, non-linear relations between the considered solar wind parameters. This approach is not designed to reconstruct the temporal structure of the observations. Instead a time-stable model is assumed and each point of measurement is treated separately. This approach is applied to solar wind data from the Advanced Composition Explorer (ACE). The neural network reconstructions are evaluated in comparison to observations, and the resulting reconstruction accuracies for each reconstructed solar wind parameter are compared while differentiating between different solar wind conditions (i.e., different solar wind types) and between different phases in the solar activity cycle. Therein, solar wind types are identified according to two solar-wind classification schemes based on proton plasma properties.Results.Within the limits defined by the measurement uncertainties, the proton density and proton temperature can be reconstructed well. Each parameter was evaluated with multiple criteria. Overall proton speed was the parameter with the most accurate reconstruction, while the oxygen charge-state ratio and magnetic field strength were most difficult to recover. We also analysed the results for different solar wind types separately and found that the reconstruction is most difficult for solar wind streams preceding and following stream interfaces.Conclusions.For all considered solar wind parameters, but in particular the proton density, proton temperature, and the oxygen charge-state ratio, parameter reconstruction is hindered by measurement uncertainties. The proton speed, while being one of the easiest to measure, also seems to carry the highest degree of redundancy with the combination of the four other solar wind parameters. Nevertheless, the reconstruction accuracy for the proton speed is limited by the large measurement uncertainties on the respective input parameters. The reconstruction accuracy of sector reversal plasma is noticeably lower than that of streamer belt or coronal hole plasma. We suspect that this is a result of the effect of stream interaction regions, which strongly influence the proton plasma properties and are typically assigned to sector reversal plasma. The fact that the oxygen charge-state ratio –a non-transport-affected property– is difficult to reconstruct may imply that recovering source-specific information from the transport-affected proton plasma properties is challenging. This underlines the importance of measuring the heavy ion charge-state composition.

Funder

Deutsches Zentrum für Luft- und Raumfahrt

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference78 articles.

1. Aellig M., Grünwaldt H., Bochsler P., et al. 1997, in Fifth SOHO Workshop: The Corona and Solar Wind Near Minimum Activity, ESA Spec. Pub., 415, 27

2. The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction

3. Visualizing and Interpreting Unsupervised Solar Wind Classifications

4. A MODEL FOR THE SOURCES OF THE SLOW SOLAR WIND

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3