The extremely high albedo of LTT 9779 b revealed by CHEOPS

Author:

Hoyer S.ORCID,Jenkins J. S.ORCID,Parmentier V.ORCID,Deleuil M.ORCID,Scandariato G.ORCID,Wilson T. G.ORCID,Díaz M. R.,Crossfield I. J. M.,Dragomir D.ORCID,Kataria T.,Lendl M.ORCID,Ramirez R.ORCID,Peña Rojas P. A.,Vinés J. I.

Abstract

Context. Optical secondary eclipse measurements of small planets can provide a wealth of information about the reflective properties of these worlds, but the measurements are particularly challenging to attain because of their relatively shallow depth. If such signals can be detected and modeled, however, they can provide planetary albedos, thermal characteristics, and information on absorbers in the upper atmosphere. Aims. We aim to detect and characterize the optical secondary eclipse of the planet LTT 9779 b using the CHaracterising ExOPlanet Satellite (CHEOPS) to measure the planetary albedo and search for the signature of atmospheric condensates. Methods. We observed ten secondary eclipses of the planet with CHEOPS. We carefully analyzed and detrended the light curves using three independent methods to perform the final astrophysical detrending and eclipse model fitting of the individual and combined light curves. Results. Each of our analysis methods yielded statistically similar results, providing a robust detection of the eclipse of LTT 9779 b with a depth of 115±24 ppm. This surprisingly large depth provides a geometric albedo for the planet of 0.80−0.17+0.10, consistent with estimates of radiative-convective models. This value is similar to that of Venus in our own Solar System. When combining the eclipse from CHEOPS with the measurements from TESS and Spitzer, our global climate models indicate that LTT 9779 b likely has a super metal-rich atmosphere, with a lower limit of 400× solar being found, and the presence of silicate clouds. The observations also reveal hints of optical eclipse depth variability, but these have yet to be confirmed. Conclusions. The results found here in the optical when combined with those in the near-infrared provide the first steps toward understanding the atmospheric structure and physical processes of ultrahot Neptune worlds that inhabit the Neptune desert.

Funder

CNES

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3