Surveys of clumps, cores, and condensations in Cygnus-X. Searching for circumstellar disks

Author:

Pan Xing,Qiu Keping,Yang Kai,Cao Yue,Zhang Xu

Abstract

Theories and models have suggested that circumstellar disks could channel material to the central protostar, and resist star formation feedback. Our current knowledge of the picture and role of disks around massive protostars is unclear because the observational evidence of these circumstellar disks is limited. To investigate whether disk-mediated accretion is the primary mechanism in high-mass star formation, we have established a survey of a large sample of massive dense cores within a giant molecular cloud. We used high angular resolution ($ 1.8''$) observations with SMA to study the dust emission and molecular line emission of about 50 massive dense cores in Cygnus-X. At a typical distance of 1.4 kpc for Cygnus-X, these massive dense cores are resolved into $ 2000$ au condensations. We combined the CO outflow emission and gas kinematics traced by several high-density tracers to search for disk candidates. We extracted hundreds of dust condensations from the SMA 1.3 mm dust continuum emission. The CO data show bipolar or unipolar outflow signatures toward 49 dust condensations. Among them, only 27 sources are detected in dense gas tracers, which reveals the gas kinematics, and nine sources show evidence of rotating envelopes, suggesting the existence of embedded accretion disks. The position-velocity diagrams along the velocity gradient of all rotating condensations suggest that four condensations are possible to host Keplerian-like disks. A detailed investigation of the 27 sources detected in dense gas tracers suggests that the nine disk candidates are at earlier evolutionary stages compared to the remaining 18 sources. Non-detection of rotating disks in our sample may be due to several factors, including an unknown inclination angle of the rotation axis and an early evolutionary stage of the central source, and the latter could be important, considering that young and powerful outflows could confuse the observational evidence for rotation. The detection rate of disk candidates in our sample is 1/3, which confirms that disk accretion is a viable mechanism for high-mass star formation, although it may not be the only one.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Manned Space Project

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3