Long-term Swift and Metsähovi monitoring of SDSS J164100.10+345452.7 reveals multi-wavelength correlated variability

Author:

Romano P.ORCID,Lähteenmäki A.ORCID,Vercellone S.ORCID,Foschini L.ORCID,Berton M.ORCID,Raiteri C. M.ORCID,Braito V.ORCID,Ciroi S.ORCID,Järvelä E.ORCID,Baitieri S.ORCID,Varglund I.ORCID,Tornikoski M.ORCID,Suutarinen S.ORCID

Abstract

We report on the first multi-wavelength Swift monitoring campaign performed on SDSS J164100.10+345452.7, a nearby narrow-line Seyfert 1 galaxy that had formerly been considered to be radio-quiet. It has, however, more recently been detected both in the radio (at 37 GHz) and in the γ-ray, a behaviour that hints at the presence of a relativistic jet. During our 20-month Swift campaign, while pursuing the primary goal of assessing the baseline optical/UV and X-ray properties of SDSS J164100.10+345452.7, we observed two radio flaring episodes, namely, one each year. Our strictly simultaneous multi-wavelength data closely match the radio flare and allow us to unambiguously link the jetted radio emission of SDSS J164100.10+345452.7. Indeed, for the X-ray spectra preceding and following the radio flare, a simple absorbed power-law model does not offer an adequate description and, thus, an extra absorption component is required. The average spectrum of SDSS J164100.10+345452.7 can best be described by an absorbed power-law model with a photon index Γ = 1.93 ± 0.12, modified by a partially covering neutral absorber with a covering fraction of f = 0.91−0.03+0.02. On the contrary, the X-ray spectrum closest to the radio flare does not require any such extra absorber and it is much harder (Γflare ∼ 0.7 ± 0.4), thus implying the emergence of an additional, harder spectral component. We interpret this as the jet emission emerging from a gap in the absorber. The fractional variability we derived in the optical/UV and X-ray bands is found to be lower than the typical values reported in the literature because our observations of SDSS J164100.10+345452.7 are dominated by the source being in a low state, as opposed to the literature, where the observations were generally taken as a follow-up of bright flares in other energy bands. Based on the assumption that the origin of the 37 GHz radio flare is the emergence of a jet from an obscuring screen also observed in the X-ray, the derived total jet power is Pjettot = 3.5 × 1042 erg s−1. This result is close to the lowest values measured in the literature.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3