Calibrating angular momentum transport in intermediate-mass stars from gravity-mode asteroseismology

Author:

Mombarg J. S. G.ORCID

Abstract

Context. The physical mechanisms driving the transport of angular momentum in stars are not fully understood, as current models cannot explain the observed stellar rotation profiles across all stages of evolution. Aims. By making use of pulsating F-type dwarfs, we aim to (i) observationally calibrate the efficiency of angular momentum transport, assuming a constant uniform viscosity, and (ii) test how well state-of-the-art rotating stellar models with angular momentum (AM) transport by rotationally induced processes can explain observed rotation profiles. In both cases, the aim is to simultaneously reproduce the measured near-core rotation and core-to-surface rotation ratio. Methods. Asteroseismic modelling is applied to a sample of seven slowly rotating pulsators in order to derive (core) masses and ages from their gravity-mode oscillations. This work focuses on the main sequence (MS), using models that start with an initial uniform rotation frequency at the start of core-hydrogen burning, which is a free parameter. Two treatments of AM transport are considered: (i) a constant uniform viscosity, and (ii) rotationally induced processes (including the Spruit-Tayler dynamo). Next, the initial rotation frequency of each star is derived from the observed present-day near-core rotation frequency for both treatments. Results. Asteroseismic modelling of gravity mode periods reveals that all seven slowly rotating stars (one of which is not further modelled) in the sample are near the end of core-hydrogen burning. To explain the near-core rotation rate at the inferred age, initial rotation frequencies at the zero-age main sequence need to be below 10% of the initial critical break-up frequency. The derived initial rotation frequencies are consistent with previous works. Conclusions. A diffusive approximation of angular momentum transport can in general explain the observed rotation profiles of the six slowly rotating F-type dwarfs for average values of the viscosity of between 2 × 105 and 5 × 107 cm2 s−1 or when the viscosity is computed from rotationally induced mechanisms. Yet, for three stars in the sample, the core-to-surface rotation fraction from rotationally induced mechanisms is predicted to be higher than observed.

Funder

European Reseach Counsil

French Agence Nationale de la Recherche

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3