Optical/X-ray/radio view of Abell 1213: A galaxy cluster with anomalous diffuse radio emission

Author:

Boschin W.ORCID,Girardi M.ORCID,De Grandi S.ORCID,Riva G.ORCID,Feretti L.,Giovannini G.,Govoni F.ORCID,Vacca V.ORCID

Abstract

Context. Abell 1213, a low-richness galaxy system, is known to host an anomalous radio halo detected in data of the Very Large Array (VLA). It is an outlier with regard to the relation between the radio halo power and the X-ray luminosity of the parent clusters. Aims. Our aim is to analyze the cluster in the optical, X-ray, and radio bands to characterize the environment of its diffuse radio emission and to shed new light on its nature. Methods. We used optical data from the Sloan Digital Sky Survey to study the internal dynamics of the cluster. We also analyzed archival XMM-Newton X-ray data to unveil the properties of its hot intracluster medium. Finally, we used recent data from the LOw Frequency ARray (LOFAR) at 144 MHz, together with VLA data at 1.4 GHz, to study the spectral behavior of the diffuse radio source. Results. Both our optical and X-ray analysis reveal that this low-mass cluster exhibits disturbed dynamics. In fact, it is composed of several galaxy groups in the peripheral regions and, in particular, in the core, where we find evidence of substructures oriented in the NE–SW direction, with hints of a merger nearly along the line of sight. The analysis of the X-ray emission adds further evidence that the cluster is in an unrelaxed dynamical state. At radio wavelengths, the LOFAR data show that the diffuse emission is ∼510 kpc in size. Moreover, there are hints of low-surface-brightness emission permeating the cluster center. Conclusions. The environment of the diffuse radio emission is not what we would expect for a classical halo. The spectral index map of the radio source is compatible with a relic interpretation, possibly due to a merger in the N–S or NE–SW directions, in agreement with the substructures detected through the optical analysis. The fragmented, diffuse radio emissions at the cluster center could be attributed to the surface brightness peaks of a faint central radio halo.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3