Implications of time-dependent molecular chemistry in metal-poor dwarf stars

Author:

Deshmukh S. A.,Ludwig H.-G.

Abstract

Context. Binary molecules such as CO, OH, CH, CN, and C2 are often used as abundance indicators in stars. These species are usually assumed to be formed in chemical equilibrium. The time-dependent effects of hydrodynamics can affect the formation and dissociation of these species and may lead to deviations from chemical equilibrium. Aims. We aim to model departures from chemical equilibrium in dwarf stellar atmospheres by considering time-dependent chemical kinetics alongside hydrodynamics and radiation transfer. We examine the effects of a decreasing metallicity and an altered C/O ratio on the chemistry when compared to the equilibrium state. Methods. We used the radiation-(magneto)hydrodynamics code CO5BOLD and its own chemical solver to solve for the chemistry of 14 species and 76 reactions. The species were treated as passive tracers and were advected by the velocity field. The steady-state chemistry was also computed to isolate the effects of hydrodynamics. Results. In most of the photospheres in the models we present, the mean deviations are smaller than 0.2 dex, and they generally appear above log τ = −2. The deviations increase with height because the chemical timescales become longer with decreasing density and temperature. A reduced metallicity similarly results in longer chemical timescales and in a reduction in yield that is proportional to the drop in metallicity; a decrease by a factor 100 in metallicity loosely corresponds to an increase by factor 100 in chemical timescales. As both CH and OH are formed along reaction pathways to CO, the C/O ratio means that the more abundant element gives faster timescales to the constituent molecular species. Overall, the carbon enhancement phenomenon seen in very metal-poor stars is not a result of an improper treatment of molecular chemistry for stars up to a metallicity as low as [Fe/H] = −3.0.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3