A possible dwarf galaxy satellite-of-satellite problem in ΛCDM

Author:

Müller OliverORCID,Heesters NickORCID,Jerjen HelmutORCID,Anand GagandeepORCID,Revaz Yves

Abstract

Dark matter clusters on all scales, and it is therefore expected that even substructure should host its own substructure. Using the Extragalactic Distance Database, we searched for dwarf-galaxy satellites of dwarf galaxies, that is, satellite-of-satellite galaxies, corresponding to these substructures of substructure. From investigation of Hubble Space Telescope data for 117 dwarf galaxies, we report the discovery of a previously unknown dwarf galaxy around the ultra-diffuse M96 companion M96-DF6 at 10.2 Mpc in the Leo-I group. We confirm its dwarf-galaxy nature as a stellar overdensity. Modeling its structural parameters with a growth-curve analysis, we find that it is an ultrafaint dwarf galaxy with a luminosity of 1.5 × 105 L, which is 135 times fainter than its host. Based on its close projection to M96-DF6, it is unlikely that their association occurs simply by chance. We compare the luminosity ratio of this and three other known satellite-of-satellite systems with results from two different cosmological sets of ΛCDM simulations. For the observed stellar mass range of the central dwarf galaxies, the simulated dwarfs have a higher luminosity ratio between the central dwarf and its first satellite (≈10 000) than observed (≈100), excluding the Large and Small Magellanic Cloud (LMC/SMC) system. No simulated dwarf analog at these observed stellar masses has the observed luminosity ratio. This cannot be due to missing resolution, because it is the brightest subhalos that are missing. This may indicate that there is a satellite-of-satellite (SoS) problem for ΛCDM in the stellar-mass range between 106 and 108 M, the regime of the classical dwarf galaxies. However, simulated dwarf models at both a lower (< 106 M) and higher (> 108 M) stellar mass have comparable luminosity ratios. For the higher-stellar-mass systems, the LMC/SMC system is reproduced by simulations; for the lower stellar masses, no observed satellite-of-satellite system has been observed to date. More observations and simulations of satellite-of-satellite systems are needed to assess whether the luminosity ratio is at odds with ΛCDM.

Funder

SNSF

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3