Sapaki: Galactic O3If* star possibly born in isolation

Author:

Zarricueta Plaza M. S.ORCID,Roman-Lopes A.ORCID,Sanmartim D.ORCID

Abstract

Context. The study of high-mass stars found to be isolated in the field of the Milky Way may help to probe the feasibility of the core-accretion mechanism in the case of massive star formation. The existence of truly isolated stars may efficiently probe the possibility that individual massive stars can be born in isolation. Aims. We observed WR67a (hereafter Sapaki), an O3If* star that appears to be isolated close to the center of a well-developed giant cavity that is aptly traced by 8.0 μm hot dust emission. Methods. We acquired medium-resolution (R  =  4100) and moderate signal-to-noise (S/N  =  95 at 4500 Å) spectra for Sapaki in the range of 3800 − 10 500 Å with the Magellan Echellette (MagE) at Las Campanas Observatory. We computed the line-of-sight total extinctions. Additionally, we restricted its heliocentric distance by using a range of different estimators. Moreover, we measured its radial velocity from several lines in its spectrum. Finally, we analyzed its proper motions from Gaia to examine its possible runaway status. Results. The star has been classified as having the spectral type O3If* given its resemblance to standard examples of the class. In addition, we found that Sapaki is highly obscured, reaching a line-of-sight extinction value of AV = 7.87. We estimated the heliocentric distance to be in the range of d = 4 − 7 kpc. We also estimated its radial velocity to be Vr = −34.2 ± 15.6 km s−1. We may also discard its runaway status solely based on its 2D kinematics. Furthermore, by analyzing proper motions and parallaxes provided by Gaia, we found only one other star with compatible measurements. Conclusions. Given its apparent non-runaway status and the absence of clustering, Sapaki appears to be a solid candidate for isolated high-mass star formation in the Milky Way.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3