The young massive SMC cluster NGC 330 seen by MUSE

Author:

Bodensteiner J.ORCID,Sana H.ORCID,Dufton P. L.,Wang C.ORCID,Langer N.,Banyard G.ORCID,Mahy L.ORCID,de Koter A.,de Mink S. E.ORCID,Evans C. J.ORCID,Götberg Y.ORCID,Hénault-Brunet V.ORCID,Patrick L. R.ORCID,Schneider F. R. N.ORCID

Abstract

Context. The origin of the initial rotation rates of stars, and how a star’s surface rotational velocity changes during the evolution, either by internal angular momentum transport or due to interactions with a binary companion, remain open questions in stellar astrophysics. Aims. Here, we aim to derive the physical parameters and study the distribution of (projected) rotational velocities of B-type stars in the ∼35 Myr-old, massive cluster NGC 330 in the Small Magellanic Cloud. NGC 330 is in an age range where the number of post-interaction binaries is predicted to be high near the cluster turnoff (TO). Methods. We developed a simultaneous photometric and spectroscopic grid-fitting method adjusting atmosphere models on multiband Hubble Space Telescope (HST) photometry and Multi Unit Spectroscopic Explorer (MUSE) spectroscopy. This allowed us to homogeneously constrain the physical parameters of over 250 B and Be stars (i.e., B-type stars with emission lines), brighter than mF814W = 18.8 mag. Results. The rotational velocities of Be stars in NGC 330 are significantly higher than the ones of B-type stars. The rotational velocities vary as a function of the star’s position in the color-magnitude diagram, qualitatively following predictions of binary population synthesis. A comparison to younger clusters shows that stars in NGC 330 rotate more rapidly on average. Conclusions. The rotational velocities of the ∼35 Myr old population in NGC 330 quantitatively agree with predictions for a stellar population that underwent significant binary interactions: the majority of the B-type stars could be single stars or primaries in pre-interaction binaries. The rapidly spinning Be stars could be mass and angular momentum gainers in previous interactions, while those Be stars close to the TO may be spun-up single stars. The slowly rotating, apparently single stars above the TO could be merger products. The different v sin i characteristics of NGC 330 compared to younger populations can be understood in this framework.

Funder

FWO

ERC

ESA/BELSPO

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3