The RAdial Velocity Experiment (RAVE): Parameterisation of RAVE spectra based on convolutional neural networks

Author:

Guiglion G.,Matijevič G.,Queiroz A. B. A.,Valentini M.,Steinmetz M.,Chiappini C.,Grebel E. K.,McMillan P. J.,Kordopatis G.,Kunder A.,Zwitter T.,Khalatyan A.,Anders F.,Enke H.,Minchev I.,Monari G.,Wyse R. F. G.,Bienaymé O.,Bland-Hawthorn J.,Gibson B. K.,Navarro J. F.,Parker Q.,Reid W.,Seabroke G. M.,Siebert A.

Abstract

Context. Data-driven methods play an increasingly important role in the field of astrophysics. In the context of large spectroscopic surveys of stars, data-driven methods are key in deducing physical parameters for millions of spectra in a short time. Convolutional neural networks (CNNs) enable us to connect observables (e.g. spectra, stellar magnitudes) to physical properties (atmospheric parameters, chemical abundances, or labels in general). Aims. We test whether it is possible to transfer the labels derived from a high-resolution stellar survey to intermediate-resolution spectra of another survey by using a CNN. Methods. We trained a CNN, adopting stellar atmospheric parameters and chemical abundances from APOGEE DR16 (resolution R = 22 500) data as training set labels. As input, we used parts of the intermediate-resolution RAVE DR6 spectra (R ∼ 7500) overlapping with the APOGEE DR16 data as well as broad-band ALL_WISE and 2MASS photometry, together with Gaia DR2 photometry and parallaxes. Results. We derived precise atmospheric parameters Teff, log(g), and [M/H], along with the chemical abundances of [Fe/H], [α/M], [Mg/Fe], [Si/Fe], [Al/Fe], and [Ni/Fe] for 420 165 RAVE spectra. The precision typically amounts to 60 K in Teff, 0.06 in log(g) and 0.02−0.04 dex for individual chemical abundances. Incorporating photometry and astrometry as additional constraints substantially improves the results in terms of the accuracy and precision of the derived labels, as long as we operate in those parts of the parameter space that are well-covered by the training sample. Scientific validation confirms the robustness of the CNN results. We provide a catalogue of CNN-trained atmospheric parameters and abundances along with their uncertainties for 420 165 stars in the RAVE survey. Conclusions. CNN-based methods provide a powerful way to combine spectroscopic, photometric, and astrometric data without the need to apply any priors in the form of stellar evolutionary models. The developed procedure can extend the scientific output of RAVE spectra beyond DR6 to ongoing and planned surveys such as Gaia RVS, 4MOST, and WEAVE. We call on the community to place a particular collective emphasis and on efforts to create unbiased training samples for such future spectroscopic surveys.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3