Oort cloud Ecology

Author:

Portegies Zwart S.ORCID

Abstract

We simulate the formation and evolution of Oort clouds around the 200 nearest stars (within ∼16 pc according to the Gaia DR2) database. This study is performed by numerically integrating the planets and minor bodies in orbit around the parent star and in the Galactic potential. The calculations start 1 Gyr ago and continue for 100 Myr into the future. In this time frame, we simulate how asteroids (and planets) are ejected from the vicinity of the stars and settle in an Oort cloud and how they escape the local stellar gravity to form tidal streams. A fraction of 0.0098 to 0.026 of the asteroids remain bound to their parent star. The orbits of these asteroids isotropize and circularize because of the influence of the Galactic tidal field and eventually form an Oort cloud between ∼104 and ∼2 × 105 au. We estimate that ≲6% of the nearby stars may have a planet in their Oort cloud. The majority of asteroids (and some of the planets) become unbound from their parent star to become free floating in the Galactic potential. These interstellar asteroids remain in a similar orbit around the Galactic center to their host star, forming dense streams of rogue interstellar asteroids and planets. The Solar System occasionally passes through such tidal streams, potentially giving rise to occasional close encounters with objects in this stream. Two recently discovered sources, 1I/(2017 Q3) ’Oumuamua and 2I/(2019 Q4) Borisov, may be such objects. Although the direction from which an individual object originated cannot easily be traced back to the original host, multiple such objects coming from the same source might help to identify their origin. Currently, the Solar System is in the bow or wake of the tidal stream of approximately ten of the nearby stars, which might contribute considerably to the interaction rate. Overall, we estimate that the local density of such leftovers from the planet-formation process contributes to a local density of 1.2 × 1014 per pc−3, or ≳0.1 of the interstellar visitors originate from the obliterated debris disks of such nearby stars.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Future trajectories of the Solar System: dynamical simulations of stellar encounters within 100 au;Monthly Notices of the Royal Astronomical Society;2023-11-27

2. Chasing nomadic worlds: A new class of deep space missions;Acta Astronautica;2023-11

3. Close encounters of the interstellar kind: exploring the capture of interstellar objects in near-Earth orbit;Monthly Notices of the Royal Astronomical Society;2023-07-29

4. On the pollution of white dwarfs by exo-Oort cloud comets;Monthly Notices of the Royal Astronomical Society;2023-07-26

5. Oort cloud (exo)planets;Monthly Notices of the Royal Astronomical Society: Letters;2023-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3