The GRAVITY young stellar object survey

Author:

,Bouarour Y.-I.,Perraut K.,Ménard F.,Brandner W.,Caratti o Garatti A.,Caselli P.,van Dishoeck E.,Dougados C.,Garcia-Lopez R.,Grellmann R.,Henning T.,Klarmann L.,Labadie L.,Natta A.,Sanchez-Bermudez J.,Thi W.-F.,de Zeeuw P. T.,Amorim A.,Bauböck M.,Benisty M.,Berger J.-P.,Clenet Y.,Coudé du Foresto V.,Duvert G.,Eckart A.,Eisenhauer F.,Eupen F.,Filho M.,Gao F.,Garcia P.,Gendron E.,Genzel R.,Gillessen S.,Jiménez-Rosales A.,Jocou L.,Hippler S.,Horrobin M.,Hubert Z.,Kervella P.,Lacour S.,Le Bouquin J.-B.,Léna P.,Ott T.,Paumard T.,Perrin G.,Pfuhl O.,Rousset G.,Scheithauer S.,Shangguan J.,Stadler J.,Straub O.,Straubmeier C.,Sturm E.,Vincent F. H.,von Fellenberg S. D.,Widmann F.,Wiest M.

Abstract

Context. Studies of the dust distribution, composition, and evolution of protoplanetary disks provide clues for understanding planet formation. However, little is known about the innermost regions of disks where telluric planets are expected to form. Aims. We aim constrain the geometry of the inner disk of the T Tauri star RY Lup by combining spectro-photometric data and interferometric observations in the near-infrared (NIR) collected at the Very Large Telescope Interferometer. We use PIONIER data from the ESO archive and GRAVITY data that were obtained in June 2017 with the four 8m telescopes. Methods. We use a parametric disk model and the 3D radiative transfer code MCFOST to reproduce the spectral energy distribution (SED) and match the interferometric observations. MCFOST produces synthetic SEDs and intensity maps at different wavelengths from which we compute the modeled interferometric visibilities and closure phases through Fourier transform. Results. To match the SED from the blue to the millimetric range, our model requires a stellar luminosity of 2.5 L, higher than any previously determined values. Such a high value is needed to accommodate the circumstellar extinction caused by the highly inclined disk, which has been neglected in previous studies. While using an effective temperature of 4800 K determined through high-resolution spectroscopy, we derive a stellar radius of 2.29 R. These revised fundamental parameters, when combined with the mass estimates available (in the range 1.3–1.5 M), lead to an age of 0.5–2.0 Ma for RY Lup, in better agreement with the age of the Lupus association than previous determinations. Our disk model (that has a transition disk geometry) nicely reproduces the interferometric GRAVITY data and is in good agreement with the PIONIER ones. We derive an inner rim location at 0.12 au from the central star. This model corresponds to an inclination of the inner disk of 50°, which is in mild tension with previous determinations of a more inclined outer disk from SPHERE (70° in NIR) and ALMA (67 ± 5°) images, but consistent with the inclination determination from the ALMA CO spectra (55 ± 5°). Increasing the inclination of the inner disk to 70° leads to a higher line-of-sight extinction and therefore requires a higher stellar luminosity of 4.65 L to match the observed flux levels. This luminosity would translate to a stellar radius of 3.13 R, leading to an age of 2–3 Ma, and a stellarmass of about 2 M, in disagreement with the observed dynamical mass estimate of 1.3–1.5 M. Critically, this high-inclination inner disk model also fails to reproduce the visibilities observed with GRAVITY. Conclusions. The inner dust disk, as traced by the GRAVITY data, is located at a radius in agreement with the dust sublimation radius. An ambiguity remains regarding the respective orientations of the inner and outer disk, coplanar and mildly misaligned, respectively.As our datasets are not contemporary and the star is strongly variable, a deeper investigation will require a dedicated multi-technique observing campaign.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3