Molecular remnant of Nova 1670 (CK Vulpeculae)

Author:

Kamiński TomekORCID,Menten Karl M.,Tylenda Romuald,Wong Ka Tat,Belloche ArnaudORCID,Mehner Andrea,Schmidt Mirek R.,Patel Nimesh A.

Abstract

CK Vul erupted in 1670 and is considered a Galactic stellar-merger candidate. Its remnant, observed 350 yr after the eruption, contains a molecular component of surprisingly rich composition, including polyatomic molecules as complex as methylamine (CH3NH2). We present interferometric line surveys with subarcsec resolution with ALMA and SMA. The observations provide interferometric maps of molecular line emission at frequencies between 88 and 243 GHz that allow imaging spectroscopy of more than 180 transitions of 26 species. We present, classify, and analyze the different morphologies of the emission regions displayed by the molecules. We also perform a non-LTE radiative-transfer analysis of emission of most of the observed species, deriving the kinetic temperatures and column densities in five parts of the molecular nebula. Non-LTE effects are clearly seen in complex species including methanol absorption against the cosmic microwave background. The temperatures are about 17 K in the inner remnant and 14 K in the extended lobes, both higher than excitation temperatures estimated earlier in an LTE approach and based on single-dish spectra. We find total (hydrogen plus helium) densities in the range of 104 − 106 cm−3. The column densities provide rough relative abundance patterns in the remnant which currently are not understood. Attempts to derive elemental abundances within the assumption of a chemical equilibrium give only loose constraints on the CNO elements. That the formation of many of the observed molecules requires a major involvement of circumstellar shocks remains the preferred possibility. The molecular gas could have formed 350 yr ago or more recently. The molecules are well shielded from the interstellar radiation field by the circumstellar dust. Their presence alone indicates that the unobservable central star cannot be a hot object such as a white dwarf. This excludes some of the proposed scenarios on the nature of CK Vul. The general characteristics of the molecular environment of CK Vul derived in this study resemble quite well those of some pre-planetary nebulae and asymptotic giant branch stars, most notably that of OH231.8+4.2.

Funder

Narodowe Centrum Nauki

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Envelope ejection and the transition to homologous expansion in common-envelope events;Monthly Notices of the Royal Astronomical Society;2023-10-09

2. On the nature of the planet-powered transient event ZTF SLRN-2020;Monthly Notices of the Royal Astronomical Society: Letters;2023-06-13

3. Rotation-tunnelling spectrum and astrochemical modelling of dimethylamine, CH3NHCH3, and searches for it in space;Monthly Notices of the Royal Astronomical Society;2023-05-23

4. Lithium in red novae and their remnants;Astronomy & Astrophysics;2023-04

5. Molecules in the peculiar age-defying source IRAS 19312+1950;Astronomy & Astrophysics;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3