β Cas: The first δ Scuti star with a dynamo magnetic field

Author:

Zwintz K.ORCID,Neiner C.,Kochukhov O.ORCID,Ryabchikova T.ORCID,Pigulski A.,Müllner M.ORCID,Steindl T.ORCID,Kuschnig R.,Handler G.ORCID,Moffat A. F. J.,Pablo H.,Popowicz A.,Wade G. A.

Abstract

Context. F-type stars are characterised by several physical processes such as different pulsation mechanisms, rotation, convection, diffusion, and magnetic fields. The rapidly rotating δ Scuti star β Cas can be considered as a benchmark star to study the interaction of several of these effects. Aims. We investigate the pulsational and magnetic field properties of β Cas. We also determine the star’s apparent fundamental parameters and chemical abundances. Methods. Based on photometric time series obtained from three different space missions (BRITE-Constellation, SMEI, and TESS), we conduct a frequency analysis and investigate the stability of the pulsation amplitudes over four years of observations. We investigate the presence of a magnetic field and its properties using spectropolarimetric observations taken with the Narval instrument by applying the least-squares deconvolution and Zeeman-Doppler imaging techniques. Results. The star β Cas shows only three independent p-mode frequencies down to the few ppm-level; its highest amplitude frequency is suggested to be an n = 3,  = 2, m = 0 mode. Its magnetic field structure is quite complex and almost certainly of a dynamo origin. The atmosphere of β Cas is slightly deficient in iron peak elements and slightly overabundant in C, O, and heavier elements. Conclusions. Atypically for δ Scuti stars, we can only detect three pulsation modes down to exceptionally low noise levels for β Cas. The star is also one of very few δ Scuti pulsators known to date to show a measurable magnetic field and the first δ Scuti star with a dynamo magnetic field. These characteristics make β Cas an interesting target for future studies of dynamo processes in the thin convective envelopes of F-type stars, the transition region between fossil and dynamo fields, and the interaction between pulsations and magnetic field.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3