Accretion bursts in low-metallicity protostellar disks

Author:

Vorobyov Eduard I.,Elbakyan Vardan G.,Omukai Kazuyuki,Hosokawa Takashi,Matsukoba Ryoki,Guedel Manuel

Abstract

Aims. The early evolution of protostellar disks with metallicities in the Z = 1.0 − 0.01 Z range was studied with a particular emphasis on the strength of gravitational instability and the nature of protostellar accretion in low-metallicity systems. Methods. Numerical hydrodynamics simulations in the thin-disk limit were employed that feature separate gas and dust temperatures, and disk mass-loading from the infalling parent cloud cores. Models with cloud cores of similar initial mass and rotation pattern but distinct metallicity were considered to distinguish the effect of metallicity from that of the initial conditions. Results. The early stages of disk evolution in low-metallicity models are characterized by vigorous gravitational instability and fragmentation. Disk instability is sustained by continual mass-loading from the collapsing core. The time period that is covered by this unstable stage is much shorter in the Z = 0.01 Z models than in their higher metallicity counterparts thanks to the higher rates of mass infall caused by higher gas temperatures (which decouple from lower dust temperatures) in the inner parts of collapsing cores. Protostellar accretion rates are highly variable in the low-metallicity models reflecting the highly dynamic nature of the corresponding protostellar disks. The low-metallicity systems feature short but energetic episodes of mass accretion caused by infall of inward-migrating gaseous clumps that form via gravitational fragmentation of protostellar disks. These bursts seem to be more numerous and last longer in the Z = 0.1 Z models than in the Z = 0.01 Z case. Conclusions. Variable protostellar accretion with episodic bursts is not a particular feature of solar metallicity disks. It is also inherent to gravitationally unstable disks with metallicities up to 100 times lower than solar.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formation of a wide-orbit giant planet in a gravitationally unstable subsolar-metallicity protoplanetary disc;Monthly Notices of the Royal Astronomical Society;2023-10-05

2. On a Godunov-Type Numerical Scheme for Describing Gas and Dust Components in Star Formation Problems;Journal of Applied and Industrial Mathematics;2023-03

3. The effect of metallicity on the abundances of molecules in protoplanetary disks;Astronomy & Astrophysics;2022-11

4. Protostellar-disc fragmentation across all metallicities;Monthly Notices of the Royal Astronomical Society;2022-08-03

5. Using Coarray Fortran for Design of Hydrodynamics Code on Nested Grids;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3