Effects of anisotropy on absorption cross-section spectra of medium-sized spheroidal corundum particles

Author:

Höfer S.,Mutschke H.,Mayerhöfer Th. G.

Abstract

Context. It has been widely accepted that corundum particles condense in the atmospheres of oxygen-rich asymptotic giant branch stars and effectively produce an infrared emission feature at 13 μm. Laboratory experiments have predicted that these particles have the shape of oblate spheroids. Aims. We investigate the influence of the material anisotropy of uniaxial corundum on absorption cross section spectra of medium sized spheroidal particles in the infrared spectral region. Methods. We compared absorption cross-section spectra of the anisotropic corundum particles gained by finite-difference time-domain simulations to spectra calculated by a weighted sum approximation of the according fictive isotropic materials, with one material having the dielectric function of the ab-plane and the other having the dielectric function of the c-axis of corundum. We carried out investigations for different axes ratios of the spheroids, particles volumes, and different geometries of the dielectric axes to the particle axes as well as to the polarization and propagation direction of the incident light. Results. We observed several effects attributed to anisotropy that are non-additive, so that they cannot be reproduced with the combined spectra of the isotropic materials. Conclusions. Care should be taken when calculating the corundum infrared spectrum with simpler approaches. When particle sizes above 1 μm are to be considered, the T-matrix formalism delivers correct band shifts and bulk modes for many, but not all bands. This remains true in orientation-averaged spectra and for particles in the 0.1 μm size range.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3