Electron-impact excitation of Ni II

Author:

Dunleavy N. L.,Ramsbottom C. A.,Ballance C. P.

Abstract

Aims. Energy levels, transition probabilities, and oscillator strengths are calculated for the second most abundant iron peak element Ni II. The difficulty in obtaining an accurate target representation is related to the open d-shell nature of the target, which has a minimum requirement of single and double promotions from the ground state configuration to the n = 4 shells. Therefore, in order to achieve an accurate representation of the target ion, we have also included configurations containing the 4d, 5s, and 5p subshells. We have undertaken a study of the electron impact excitation of Ni II and present here the collision strengths for forbidden and allowed transitions among the lowest 800 fine-structure levels as well as the corresponding Maxwellian-averaged effective collision strengths for a range of astrophysically relevant electron temperatures. Methods. An accurate Ni II target structure was generated using the modified General-purpose Relativistic Atomic Structure Package (GRASP0) for the lowest lying 1220 jj fine-structure levels, comprising the 11 configurations: 3p63d9, 3p63d84s, 3p63d84p, 3p63d84d, 3p63d85s, 3p63d85p, 3p63d74s2, 3p63d75s2, 3p63d74s4p, 3p63d74s4d, and 3p43d94s4d. The relativistic parallel Dirac atomic R-matrix codes (DARC) were utilised in the scattering calculations to generate the collision strengths for incident electron energies between 0 and 2 Ryd and, by employing infinite dipole and non-dipole limit points, we also generated the effective collision strengths for temperatures in the range from 1000 to 400 000 K. Two separate calculations were performed, both comprised of truncated close-coupling expansions of 800 jj-levels with the first calculation retaining the theoretical ab initio energy levels generated in the GRASP0 evaluations, whereas in the second calculation these energies were shifted to their predicted National Institute of Standards and Technology (NIST) values where possible. This should provide a lower estimate on the uncertainty. Results. Comparisons are made between the radiative data and the collisional cross sections with past theoretical and experimental studies. The effective collision strengths when compared with the most recent published calculations, are found to agree to within 10% for the majority of the transitions considered. In addition, the data are used to model the spectrum of Ni II and good agreement is found with previous investigations and observations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference38 articles.

1. Ballance C. P. 2019, DARC, http://connorb.freeshell.org

2. Bates, David Robert K. A. E., & McWhirter R. W. P. 1962, 267

3. Atomic data from the iron project

4. Excitation of [Ni ii] and [Fe ii] Lines in Gaseous Nebulae

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3