Detailed abundances in a sample of very metal-poor stars

Author:

François P.ORCID,Wanajo S.,Caffau E.ORCID,Prantzos N.,Aoki W.,Aoki M.,Bonifacio P.ORCID,Spite M.,Spite F.ORCID

Abstract

Context. Unevolved metal-poor stars bore witness to the early evolution of the Galaxy, and the determination of their detailed chemical composition is an important tool to understand its chemical history. The study of their chemical composition can also be used to constrain the nucleosynthesis of the first generation of supernovae that enriched the interstellar medium. Aims. We aim to observe a sample of extremely metal-poor star (EMP stars) candidates selected from the Sloan Digital Sky Survey data release 12 (SDSS DR12) and determine their chemical composition. Methods. We obtained high-resolution spectra of a sample of five stars using HDS on Subaru telescope and used standard 1D models to compute the abundances. The stars we analysed have a metallicity [Fe/H] of between −3.50 and −4.25 dex. Results. We confirm that the five metal-poor candidates selected from low-resolution spectra are very metal poor. We present the discovery of a new ultra metal-poor star (UMP star) with a metallicity of [Fe/H] = −4.25 dex (SDSS J1050032.34−241009.7). We measured in this star an upper limit of lithium (log(Li/H) ≤ 2.0. We found that the four most metal-poor stars of our sample have a lower lithium abundance than the Spite plateau lithium value. We obtain upper limits for carbon in the sample of stars. None of them belong to the high carbon band. We measured abundances of Mg and Ca in most of the stars and found three new α-poor stars.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peculiarities of the chemical enrichment of metal-poor stars in the Milky Way Galaxy;Astronomy & Astrophysics;2024-07

2. Implications of the non-observation of 6Li in halo stars for the primordial 7Li problem;Journal of Cosmology and Astroparticle Physics;2022-10-01

3. Metal poor stars;Experimental Astronomy;2022-06-08

4. Accurate Metallicities for Very Metal-poor Stars from the Ca ii Infrared Triplet;The Astrophysical Journal;2022-04-01

5. TOPoS;Astronomy & Astrophysics;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3