Author:
Blake Chris,Amon Alexandra,Asgari Marika,Bilicki Maciej,Dvornik Andrej,Erben Thomas,Giblin Benjamin,Glazebrook Karl,Heymans Catherine,Hildebrandt Hendrik,Joachimi Benjamin,Joudaki Shahab,Kannawadi Arun,Kuijken Konrad,Lidman Chris,Parkinson David,Shan HuanYuan,Tröster Tilman,van den Busch Jan Luca,Wolf Christian,Wright Angus H.
Abstract
The physics of gravity on cosmological scales affects both the rate of assembly of large-scale structure and the gravitational lensing of background light through this cosmic web. By comparing the amplitude of these different observational signatures, we can construct tests that can distinguish general relativity from its potential modifications. We used the latest weak gravitational lensing dataset from the Kilo-Degree Survey, KiDS-1000, in conjunction with overlapping galaxy spectroscopic redshift surveys, BOSS and 2dFLenS, to perform the most precise existing amplitude-ratio test. We measured the associated EG statistic with 15 − 20% errors in five Δz = 0.1 tomographic redshift bins in the range 0.2 < z < 0.7 on projected scales up to 100 h−1 Mpc. The scale-independence and redshift-dependence of these measurements are consistent with the theoretical expectation of general relativity in a Universe with matter density Ωm = 0.27 ± 0.04. We demonstrate that our results are robust against different analysis choices, including schemes for correcting the effects of source photometric redshift errors, and we compare the performance of angular and projected galaxy-galaxy lensing statistics.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献