Radiography in high mass X-ray binaries

Author:

El Mellah I.ORCID,Grinberg V.,Sundqvist J. O.,Driessen F. A.,Leutenegger M. A.

Abstract

Context.In high mass X-ray binaries, an accreting compact object orbits a high mass star, which loses mass through a dense and inhomogeneous wind.Aims.Using the compact object as an X-ray backlight, the time variability of the absorbing column density in the wind can be exploited in order to shed light on the micro-structure of the wind and obtain unbiased stellar mass-loss rates for high mass stars.Methods.We developed a simplified representation of the stellar wind where all the matter is gathered in spherical “clumps” that are radially advected away from the star. This model enables us to explore the connections between the stochastic properties of the wind and the variability of the column density for a comprehensive set of parameters related to the orbit and to the wind micro-structure, such as the size of the clumps and their individual mass. In particular, we focus on the evolution with the orbital phase of the standard deviation of the column density and of the characteristic duration of enhanced absorption episodes. Using the porosity length, we derive analytical predictions and compare them to the standard deviations and coherence time scales that were obtained.Results.We identified the favorable systems and orbital phases to determine the wind micro-structure. The coherence time scale of the column density is shown to be the self-crossing time of a single clump in front of the compact object. We thus provide a procedure to get accurate measurements of the size and of the mass of the clumps, purely based on the observable time variability of the column density.Conclusions.The coherence time scale grants direct access to the size of the clumps, while their mass can be deduced separately from the amplitude of the variability. We further show how monitoring the variability at superior conjunctions can probe the onset of the clump-forming region above the stellar photosphere. If the high column density variations in some high mass X-ray binaries are due to unaccreted clumps which are passing by the line-of-sight, this would require high mass clumps to reproduce the observed peak-to-peak amplitude and coherence time scales. These clump properties are marginally compatible with the ones derived from radiative-hydrodynamics simulations. Alternatively, the following components could contribute to the variability of the column density: larger orbital scale structures produced by a mechanism that has yet to be identified or a dense environment in the immediate vicinity of the accretor, such as an accretion disk, an outflow, or a spherical shell surrounding the magnetosphere of the accreting neutron star.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3