Tracing the total molecular gas in galaxies: [CII] and the CO-dark gas

Author:

Madden S. C.,Cormier D.,Hony S.,Lebouteiller V.,Abel N.,Galametz M.,De Looze I.,Chevance M.,Polles F. L.,Lee M.-Y.,Galliano F.,Lambert-Huyghe A.,Hu D.,Ramambason L.

Abstract

Context. Molecular gas is a necessary fuel for star formation. The CO (1−0) transition is often used to deduce the total molecular hydrogen but is challenging to detect in low-metallicity galaxies in spite of the star formation taking place. In contrast, the [C II]λ158 μm is relatively bright, highlighting a potentially important reservoir of H2 that is not traced by CO (1−0) but is residing in the C+-emitting regions. Aims. Here we aim to explore a method to quantify the total H2 mass (MH2) in galaxies and to decipher what parameters control the CO-dark reservoir. Methods. We present Cloudy grids of density, radiation field, and metallicity in terms of observed quantities, such as [O I], [C I], CO (1−0), [C II], LTIR, and the total MH2. We provide recipes based on these models to derive total MH2 mass estimates from observations. We apply the models to the Herschel Dwarf Galaxy Survey, extracting the total MH2 for each galaxy, and compare this to the H2 determined from the observed CO (1−0) line. This allows us to quantify the reservoir of H2 that is CO-dark and traced by the [C II]λ158 μm. Results. We demonstrate that while the H2 traced by CO (1−0) can be negligible, the [C II]λ158 μm can trace the total H2. We find 70 to 100% of the total H2 mass is not traced by CO (1−0) in the dwarf galaxies, but is well-traced by [C II]λ158 μm. The CO-dark gas mass fraction correlates with the observed L[C II]/LCO(1−0) ratio. A conversion factor for [C II]λ158 μm to total H2 and a new CO-to-total-MH2 conversion factor as a function of metallicity are presented. Conclusions. While low-metallicity galaxies may have a feeble molecular reservoir as surmised from CO observations, the presence of an important reservoir of molecular gas that is not detected by CO can exist. We suggest a general recipe to quantify the total mass of H2 in galaxies, taking into account the CO and [C II] observations. Accounting for this CO-dark H2 gas, we find that the star-forming dwarf galaxies now fall on the Schmidt–Kennicutt relation. Their star-forming efficiency is rather normal because the reservoir from which they form stars is now more massive when introducing the [C II] measures of the total H2 compared to the small amount of H2 in the CO-emitting region.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3