Three-dimensional modeling from the onset of the SN to the full-fledged SNR

Author:

Tutone A.ORCID,Orlando S.,Miceli M.,Ustamujic S.,Ono M.,Nagataki S.,Ferrand G.,Greco E.,Peres G.,Warren D. C.,Bocchino F.

Abstract

Context. The manifold phases in the evolution of a core-collapse (CC) supernova (SN) play an important role in determining the physical properties and morphology of the resulting supernova remnant (SNR). Thus, the complex morphology of SNRs is expected to reflect possible asymmetries and structures developed during and soon after the SN explosion. Aims. The aim of this work is to bridge the gap between CC SNe and their remnants by investigating how post-explosion anisotropies in the ejecta influence the structure and chemical properties of the remnant at later times. Methods. We performed three-dimensional magneto-hydrodynamical simulations starting soon after the SN event and following the evolution of the system in the circumstellar medium, which includes the wind of the stellar progenitor, for 5000 yr, obtaining the physical scenario of a SNR. Here we focused the analysis on the case of a progenitor red supergiant of 19.8 M. We also investigated how a post-explosion large-scale anisotropy in the SN affects the ejecta distribution and the matter mixing of heavy elements in the remnant during the first 5000 yr of evolution. Results. In the case of a spherically symmetric SN explosion without large-scale anisotropies, the remnant roughly keeps memory of the original onion-like layering of ejecta soon after the SN event. Nevertheless, as the reverse shock hits the ejecta, the element distribution departs from a homologous expansion because of the slowing down of the outermost ejecta layers due to interaction with the reverse shock. In the case of a large-scale anisotropy developed after the SN, we found that the chemical stratification in the ejecta can be strongly modified and the original onion-like layering is not preserved. The anisotropy may cause spatial inversion of ejecta layers, for instance leading to Fe/Si-rich ejecta outside the O shell, and may determine the formation of Fe/Si-rich jet-like features that may protrude the remnant outline. The level of matter mixing and the properties of the jet-like feature are sensitive to the initial physical (density and velocity) and geometrical (size and position) initial characteristics of the anisotropy.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixing of materials in magnetized core-collapse supernova remnants;Monthly Notices of the Royal Astronomical Society;2023-03-24

2. The sculpting of rectangular and jet-like morphologies in supernova remnants by anisotropic equatorially confined progenitor stellar winds;Monthly Notices of the Royal Astronomical Society;2023-01-09

3. The Cassiopeia Filament: A Blown Spur of the Local Arm;The Astronomical Journal;2022-12-16

4. Formation of periodic FRB in binary systems with eccentricity;Monthly Notices of the Royal Astronomical Society;2022-06-13

5. 3D Modeling of CATIA Reverse Optimization Algorithm;Cyber Security Intelligence and Analytics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3