Comparison between the first and second mass eruptions from progenitors of Type IIn supernovae

Author:

Kuriyama Naoto,Shigeyama Toshikazu

Abstract

Context. Some massive stars experience episodic and intense mass loss phases with fluctuations in the luminosity. Ejected material forms circumstellar matter around the star, and the subsequent core collapse results in a Type IIn supernova that is characterized by interaction between supernova ejecta and circumstellar matter. The energy source that triggers these mass eruptions and dynamics of the outflow have not been clearly explained. Moreover, the mass eruption itself can alter the density structure of the envelope and affect the dynamics of the subsequent mass eruption if these events are repeated. A large amount of observational evidence suggests multiple mass eruptions prior to core collapse. Aims. We investigate the density structure of the envelope altered by the first mass eruption and the nature of the subsequent second mass eruption event in comparison with the first event. Methods. We deposited extra energy at the bottom of the hydrogen envelope of 15 M stars twice and calculated the time evolution by radiation hydrodynamical simulation code. We did not deal with the origin of the energy source, but focused on the dynamics of repeated mass eruptions from a single massive star. Results. There are significant differences between the first and second mass eruptions in terms of the luminosity, color, and amount of produced circumstellar matter. The second eruption leads to a redder burst event in which the associated brightening phase lasts longer than the first. The amount of ejected matter is different even with the same deposited energy in the first and second event, but the difference depends on the density structure of the star. Conclusions. Upcoming high cadence and deep transient surveys will provide us a lot of pre-supernova activities, and some of which might show multi-peaked light curves. These should be interpreted taking the effect of density structure altered by the preceding outburst events into consideration.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3