A nonlinear solar magnetic field calibration method for the filter-based magnetograph by the residual network

Author:

Guo JingjingORCID,Bai Xianyong,Liu HuiORCID,Yang Xu,Deng Yuanyong,Lin Jiaben,Su Jiangtao,Yang XiaoORCID,Ji KaifanORCID

Abstract

Context. The method of solar magnetic field calibration for the filter-based magnetograph is normally the linear calibration method under weak-field approximation that cannot generate the strong magnetic field region well due to the magnetic saturation effect. Aims. We try to provide a new method to carry out the nonlinear magnetic calibration with the help of neural networks to obtain more accurate magnetic fields. Methods. We employed the data from Hinode/SP to construct a training, validation and test dataset. The narrow-band Stokes I, Q, U, and V maps at one wavelength point were selected from all the 112 wavelength points observed by SP so as to simulate the single-wavelength observations of the filter-based magnetograph. We used the residual network to model the nonlinear relationship between the Stokes maps and the vector magnetic fields. Results. After an extensive performance analysis, it is found that the trained models could infer the longitudinal magnetic flux density, the transverse magnetic flux density, and the azimuth angle from the narrow-band Stokes maps with a precision comparable to the inversion results using 112 wavelength points. Moreover, the maps that were produced are much cleaner than the inversion results. The method can effectively overcome the magnetic saturation effect and infer the strong magnetic region much better than the linear calibration method. The residual errors of test samples to standard data are mostly about 50 G for both the longitudinal and transverse magnetic flux density. The values are about 100 G with our previous method of multilayer perceptron, indicating that the new method is more accurate in magnetic calibration.

Funder

Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences

National Natural Science Foundation of China

Beijing Municipal Science and Technology

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference51 articles.

1. Asensio Ramos A., & de la Cruz Rodríguez J. 2015, in Polarimetry, eds. Nagendra K. N., Bagnulo S., Centeno R., & Jesús Martínez González M., IAU Symp., 305, 225

2. DeepVel: Deep learning for the estimation of horizontal velocities at the solar surface

3. Stokes inversion based on convolutional neural networks

4. Calibration of Vector Magnetograms with the Chromospheric Mg b2 Line

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3