The CARMENES search for exoplanets around M dwarfs

Author:

Passegger V. M.,Bello-García A.ORCID,Ordieres-Meré J.ORCID,Caballero J. A.ORCID,Schweitzer A.,González-Marcos A.ORCID,Ribas I.ORCID,Reiners A.,Quirrenbach A.,Amado P. J.,Azzaro M.ORCID,Bauer F. F.,Béjar V. J. S.,Cortés-Contreras M.,Dreizler S.,Hatzes A. P.,Henning Th.,Jeffers S. V.,Kaminski A.,Kürster M.ORCID,Lafarga M.,Marfil E.ORCID,Montes D.ORCID,Morales J. C.ORCID,Nagel E.ORCID,Sarro L. M.ORCID,Solano E.,Tabernero H. M.ORCID,Zechmeister M.ORCID

Abstract

Existing and upcoming instrumentation is collecting large amounts of astrophysical data, which require efficient and fast analysis techniques. We present a deep neural network architecture to analyze high-resolution stellar spectra and predict stellar parameters such as effective temperature, surface gravity, metallicity, and rotational velocity. With this study, we firstly demonstrate the capability of deep neural networks to precisely recover stellar parameters from a synthetic training set. Secondly, we analyze the application of this method to observed spectra and the impact of the synthetic gap (i.e., the difference between observed and synthetic spectra) on the estimation of stellar parameters, their errors, and their precision. Our convolutional network is trained on synthetic PHOENIX-ACES spectra in different optical and near-infrared wavelength regions. For each of the four stellar parameters,Teff, logg, [M/H], andvsini, we constructed a neural network model to estimate each parameter independently. We then applied this method to 50 M dwarfs with high-resolution spectra taken with CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Échelle Spectrographs), which operates in the visible (520–960 nm) and near-infrared wavelength range (960–1710 nm) simultaneously. Our results are compared with literature values for these stars. They show mostly good agreement within the errors, but also exhibit large deviations in some cases, especially for [M/H], pointing out the importance of a better understanding of the synthetic gap.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference131 articles.

1. Abadi M., e. a. 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, https://github.com/tensorflow/tensorflow, accessed: 2020-02-07

2. Detection of bars in galaxies using a deep convolutional neural network

3. Allard F. 1990, PhD thesis, Centre de Recherche Astrophysique de Lyon, France

4. Model atmospheres for M (sub)dwarf stars. 1: The base model grid

5. The Limiting Effects of Dust in Brown Dwarf Model Atmospheres

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3