Destruction route of solid-state formamide by thermal H atoms

Author:

Suhasaria T.ORCID,Mennella V.ORCID

Abstract

Context. Formamide (NH2CHO) is one of the simplest “CHON” molecules that has been observed in different environments in space. In star-forming regions, its abundance in the gas phase is correlated to isocyanic acid (HNCO), indicating a chemical relation between the two species. Many studies have investigated the different routes for the transformation of the two species from one to the other. Aims. We carry out an experimental analysis on the interaction of atomic H at 300 K with solid NH2CHO to probe whether HNCO can form. Methods. The effects of H atom irradiation on NH2CHO have been analyzed by Fourier-transform infrared spectroscopy. Results. During irradiation, a decrease in the band intensity of the C–H, C=O, and N–H modes of NH2CHO with a simultaneous increase in the N=C=O band intensity of HNCO is observed, indicating a transformation of NH2CHO to HNCO. The corresponding destruction and formation cross-sections have been estimated from the trend of the normalized column densities as a function of the H atom fluence. The transformation follows a three-step reaction sequence driven by H atom exothermic abstractions that also induce sputtering of the products. No bands of aminomethanol were detected. Conclusions. The interaction of H atoms with NH2CHO in space can be one of the promising mechanisms to explain the chemical relation between NH2CHO and HNCO. In addition, the comparison of our results with those of other energetic processing agents suggests that H atoms play a crucial role in the destruction of NH2CHO ice in dense regions of the interstellar medium.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3