On the orbital evolution of binaries with circumbinary discs

Author:

Heath R. M.,Nixon C. J.

Abstract

Circumbinary discs are generally thought to take up angular momentum and energy from the binary orbit over time through gravitational torques that are mediated by orbital resonances. This process leads to the shrinkage of the binary orbit over time, and it is important in a variety of astrophysical contexts including the orbital evolution of stellar binaries, the migration of planets in protoplanetary discs, and the evolution of black hole binaries (stellar and supermassive). The merger of compact object binaries provides a source of gravitational waves in the Universe. Recently, several groups have reported numerical simulations of circumbinary discs that yield the opposite result, finding that the binary expands with time. Here we argue that this result is primarily due to the choice of simulation parameters, made for numerical reasons, which differ from realistic disc parameters in many cases. We provide physical arguments, and then demonstrate with 3D hydrodynamical simulations, that thick (high pressure, high viscosity) discs drive sufficient accretion of high angular momentum material to force binary expansion, while in the more realistic case of thin (low pressure, low viscosity) discs there is less accretion and the binary shrinks. In the latter case, tides, which generally transfer angular momentum and energy from the more rapidly rotating object (the binary) to the less rapidly rotating object (the disc), are the dominant driver of disc-binary evolution. This causes the binary to shrink. We therefore conclude that for common circumbinary disc parameters, binaries with non-extreme mass ratios are expected to shrink over time. Expansion of the binary can occur if the disc viscosity is unusually high, which may occur in the very thick discs encountered in, for example, circumplanetary discs, super-Eddington AGN, or the outer regions of passive protostellar discs that are heated by the central protostar. We also provide discussion of the impact that some simplifications to the problem, that are prevalent in the literature and usually made for numerical convenience, have on the disc-binary evolution.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Black hole binaries in AGN accretion discs – II. Gas effects on black hole satellite scatterings;Monthly Notices of the Royal Astronomical Society;2023-12-01

2. Formation of Massive and Wide First-star Binaries in Radiation Hydrodynamic Simulations;The Astrophysical Journal;2023-11-30

3. Eccentric binaries in retrograde discs;Monthly Notices of the Royal Astronomical Society;2023-11-27

4. AC Her: Evidence of the First Polar Circumbinary Planet;The Astrophysical Journal Letters;2023-11-01

5. Planet migration in massive circumbinary discs;Monthly Notices of the Royal Astronomical Society;2023-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3