Laboratory evidence for an asymmetric accretion structure upon slanted matter impact in young stars

Author:

Burdonov K.,Revet G.,Bonito R.,Argiroffi C.,Béard J.,Bolanõs S.,Cerchez M.,Chen S. N.,Ciardi A.,Espinosa G.,Filippov E.,Pikuz S.,Rodriguez R.,Šmíd M.,Starodubtsev M.,Willi O.,Orlando S.,Fuchs J.

Abstract

Aims. Investigating the process of matter accretion onto forming stars through scaled experiments in the laboratory is important in order to better understand star and planetary system formation and evolution. Such experiments can indeed complement observations by providing access to the processes with spatial and temporal resolution. A previous investigation revealed the existence of a two-component stream: a hot shell surrounding a cooler inner stream. The shell was formed by matter laterally ejected upon impact and refocused by the local magnetic field. That laboratory investigation was limited to normal incidence impacts. However, in young stellar objects, the complex structure of magnetic fields causes variability of the incident angles of the accretion columns. This led us to undertake an investigation, using laboratory plasmas, of the consequence of having a slanted accretion impacting a young star. Methods. Here, we used high power laser interactions and strong magnetic field generation in the laboratory, complemented by numerical simulations, to study the asymmetry induced upon accretion structures when columns of matter impact the surface of young stars with an oblique angle. Results. Compared to the scenario where matter accretes perpendicularly to the star surface, we observe a strongly asymmetric plasma structure, strong lateral ejecta of matter, poor confinement of the accreted material, and reduced heating compared to the normal incidence case. Thus, slanted accretion is a configuration that seems to be capable of inducing perturbations of the chromosphere and hence possibly influencing the level of activity of the corona.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3