Abstract
Aims. We investigate the dynamics and magnetic properties of the plasma, including the line-of-sight velocity (LOS) and optical depth, as well as the vertical and horizontal magnetic fields, belonging to an erupted solar filament.
Methods. The filament eruption was observed with the GREGOR Infrared Spectrograph at the 1.5-meter GREGOR telescope on July 3, 2016. We acquired three consecutive full-Stokes slit-spectropolarimetric scans in the He I 10830 Å spectral range. The Stokes I profiles were classified using the machine learning k-means algorithm and then inverted with different initial conditions using the HAZEL code.
Results. The erupting-filament material presents the following physical conditions: (1) ubiquitous upward motions with peak LOS velocities of ∼73 km s−1; (2) predominant large horizontal components of the magnetic field, on average, in the range of 173−254 G, whereas the vertical components of the fields are much lower, on average between 39 and 58 G; (3) optical depths in the range of 0.7−1.1. The average azimuth orientation of the field lines between two consecutive raster scans (<2.5 min) remained constant.
Conclusions. The analyzed filament eruption belongs to the fast rising phase, with total velocities of about 124 km s−1. The orientation of the magnetic field lines does not change from one raster scan to the other, indicating that the untwisting phase has not yet started. The untwisting appears to start about 15 min after the beginning of the filament eruption.
Funder
Deutscher Akademischer Austauschdienst
Horizon 2020
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
Erasmus+
Ministerio de Ciencia, Innovación y Universidades
European Research Council
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献