Sunspot penumbral filaments intruding into a light bridge and the resultant reconnection jets

Author:

Hou Y. J.ORCID,Li T.,Zhong S. H.,Yang S. H.,Guo Y. L.,Li X. H.,Zhang J.,Xiang Y. Y.

Abstract

Context. Penumbral filaments and light bridges are prominent structures inside sunspots and are important for understanding the nature of sunspot magnetic fields and magneto-convection underneath. Aims. We investigate an interesting event where several penumbral filaments intrude into a sunspot light bridge. In doing so we aim to gain further insight into the magnetic fields of the sunspot penumbral filament and light bridge, as well as their interaction. Methods. Combining data from the New Vacuum Solar Telescope, Solar Dynamics Observatory, and Interface Region Imaging Spectrograph, we study the emission, kinematic, and magnetic topology characteristics of the penumbral filaments intruding into the light bridge and the resultant jets. Results. At the west part of the light bridge, the intruding penumbral filaments penetrate into the umbrae on both sides of the light bridge, and two groups of jets are also detected. The jets share the same projected morphology with the intruding filaments and are accompanied by intermittent footpoint brightenings. Simultaneous spectral imaging observations provide convincing evidence for the presences of magnetic-reconnection-related heating and bidirectional flows near the jet bases and contribute to measuring the vector velocities of the jets. Additionally, nonlinear force-free field extrapolation results reveal strong and highly inclined magnetic fields along the intruding penumbral filaments, highly consistent with the results deduced from the vector velocities of the jets. Therefore, we propose that the jets could be caused by magnetic reconnections between emerging fields within the light bridge and the nearly horizontal fields of intruding filaments. The jets are then ejected outward along the stronger filament fields. Conclusions. Our study indicates that magnetic reconnection could occur between the penumbral filament fields and emerging fields within the light bridge and produce jets along the stronger filament fields. These results further complement the study of magnetic reconnection and dynamic activities within the sunspot.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3