Comparison of multifrequency positions of extragalactic sources from ICRF3 and Gaia EDR3

Author:

Liu N.ORCID,Lambert S. B.,Charlot P.,Zhu Z.,Liu J.-C.,Jiang N.,Wan X.-S.,Ding C.-Y.

Abstract

Context. Comparisons of optical positions derived from the Gaia mission and radio positions measured by very long baseline interferometry (VLBI) probe the structure of active galactic nuclei (AGN) on the milliarcsecond scale. So far, these comparisons have focused on using the SX-band (2/8 GHz) radio positions, but did not take advantage of the VLBI positions that exist at higher radio frequencies, namely at K-band (24 GHz) and XKa-band (8/32 GHz). Aims. We extend previous works by considering two additional radio frequencies (K-band and XKa-band) with the aim to study the frequency dependence of the source positions and its potential connection with the physical properties of the underlying AGN. Methods. We compared the absolute source positions measured at four different wavelengths, that is, the optical position from the Gaia Early Data Release 3 (EDR3) and the radio positions at the SX-, K-, and XKa-band, as available from the third realization of the International Celestial Reference Frame (ICRF3), for 512 common sources. We first aligned the three ICRF3 individual catalogs to the Gaia EDR3 frame and compared the optical-to-radio offsets before and after the alignment. Then we studied the correlation of optical-to-radio offsets with the observing (radio) frequency, source morphology, magnitude, redshift, and source type. Results. The deviation among optical-to-radio offsets determined in the different radio bands is less than 0.5 mas, but there is statistical evidence that the optical-to-radio offset is smaller at K-band compared to SX-band for sources showing extended structures. The optical-to-radio offset was found to statistically correlate with the structure index. Large optical-to-radio offsets appear to favor faint sources, but are well explained by positional uncertainty, which is also larger for these sources. We did not detect any statistically significant correlation between the optical-to-radio offset and the redshift. Conclusions. The radio source structure appears to be a major cause for the radio-to-optical offset. For the alignment of the Gaia celestial reference frame, the SX-band frame remains the preferred choice at present.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

China Postdoctoral Science Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3