Planck intermediate results

Author:

,Akrami Y.,Andersen K. J.,Ashdown M.,Baccigalupi C.,Ballardini M.,Banday A. J.,Barreiro R. B.,Bartolo N.,Basak S.,Benabed K.,Bernard J.-P.,Bersanelli M.,Bielewicz P.,Bond J. R.,Borrill J.,Burigana C.,Butler R. C.,Calabrese E.,Casaponsa B.,Chiang H. C.,Colombo L. P. L.,Combet C.,Crill B. P.,Cuttaia F.,de Bernardis P.,de Rosa A.,de Zotti G.,Delabrouille J.,Di Valentino E.,Diego J. M.,Doré O.,Douspis M.,Dupac X.,Eriksen H. K.,Fernandez-Cobos R.,Finelli F.,Frailis M.,Fraisse A. A.,Franceschi E.,Frolov A.,Galeotta S.,Galli S.,Ganga K.,Gerbino M.,Ghosh T.,González-Nuevo J.,Górski K. M.,Gruppuso A.,Gudmundsson J. E.,Handley W.,Helou G.,Herranz D.,Hildebrandt S. R.,Hivon E.,Huang Z.,Jaffe A. H.,Jones W. C.,Keihänen E.,Keskitalo R.,Kiiveri K.,Kim J.,Kisner T. S.,Krachmalnicoff N.,Kunz M.,Kurki-Suonio H.,Lasenby A.,Lattanzi M.,Lawrence C. R.,Le Jeune M.,Levrier F.,Liguori M.,Lilje P. B.,Lilley M.,Lindholm V.,López-Caniego M.,Lubin P. M.,Macías-Pérez J. F.,Maino D.,Mandolesi N.,Marcos-Caballero A.,Maris M.,Martin P. G.,Martínez-González E.,Matarrese S.,Mauri N.,McEwen J. D.,Meinhold P. R.,Mennella A.,Migliaccio M.,Mitra S.,Molinari D.,Montier L.,Morgante G.,Moss A.,Natoli P.,Paoletti D.,Partridge B.,Patanchon G.,Pearson D.,Pearson T. J.,Perrotta F.,Piacentini F.,Polenta G.,Rachen J. P.,Reinecke M.,Remazeilles M.,Renzi A.,Rocha G.,Rosset C.,Roudier G.,Rubiño-Martín J. A.,Ruiz-Granados B.,Salvati L.,Savelainen M.,Scott D.,Sirignano C.,Sirri G.,Spencer L. D.,Suur-Uski A.-S.,Svalheim L. T.,Tauber J. A.,Tavagnacco D.,Tenti M.,Terenzi L.,Thommesen H.,Toffolatti L.,Tomasi M.,Tristram M.,Trombetti T.,Valiviita J.,Van Tent B.,Vielva P.,Villa F.,Vittorio N.,Wandelt B. D.,Wehus I. K.,Zacchei A.,Zonca A.

Abstract

We present the NPIPE processing pipeline, which produces calibrated frequency maps in temperature and polarization from data from the Planck Low Frequency Instrument (LFI) and High Frequency Instrument (HFI) using high-performance computers. NPIPE represents a natural evolution of previous Planck analysis efforts, and combines some of the most powerful features of the separate LFI and HFI analysis pipelines. For example, following the LFI 2018 processing procedure, NPIPE uses foreground polarization priors during the calibration stage in order to break scanning-induced degeneracies. Similarly, NPIPE employs the HFI 2018 time-domain processing methodology to correct for bandpass mismatch at all frequencies. In addition, NPIPE introduces several improvements, including, but not limited to: inclusion of the 8% of data collected during repointing manoeuvres; smoothing of the LFI reference load data streams; in-flight estimation of detector polarization parameters; and construction of maximally independent detector-set split maps. For component-separation purposes, important improvements include: maps that retain the CMB Solar dipole, allowing for high-precision relative calibration in higher-level analyses; well-defined single-detector maps, allowing for robust CO extraction; and HFI temperature maps between 217 and 857 GHz that are binned into 0′.9 pixels (Nside = 4096), ensuring that the full angular information in the data is represented in the maps even at the highest Planck resolutions. The net effect of these improvements is lower levels of noise and systematics in both frequency and component maps at essentially all angular scales, as well as notably improved internal consistency between the various frequency channels. Based on the NPIPE maps, we present the first estimate of the Solar dipole determined through component separation across all nine Planck frequencies. The amplitude is (3366.6 ± 2.7) μK, consistent with, albeit slightly higher than, earlier estimates. From the large-scale polarization data, we derive an updated estimate of the optical depth of reionization of τ = 0.051 ± 0.006, which appears robust with respect to data and sky cuts. There are 600 complete signal, noise and systematics simulations of the full-frequency and detector-set maps. As a Planck first, these simulations include full time-domain processing of the beam-convolved CMB anisotropies. The release of NPIPE maps and simulations is accompanied with a complete suite of raw and processed time-ordered data and the software, scripts, auxiliary data, and parameter files needed to improve further on the analysis and to run matching simulations.

Funder

Horizon 2020

Department of Energy Office of Science User Facility

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3