Dorado and its member galaxies

Author:

Rampazzo R.,Ciroi S.,Mazzei P.,Di Mille F.,Congiu E.,Cattapan A.,Bianchi L.,Iodice E.,Marino A.,Plana H.,Postma J.,Spavone M.

Abstract

Context. Dorado is a nearby, rich and clumpy galaxy group that extends for several degrees in the southern hemisphere. Although several studies have been dedicated to defining its members, their kinematics, and the hot and cold gas content, in particular H I, their present star formation activity remains unknown. Aims. For the first time, we map the Hα distribution as a possible indicator of the star formation activity of Dorado members, a large fraction of which show interaction and merging signatures independently of their morphological type. Methods. With the 2.5 m du Pont and the 1m Swope telescopes, we obtained narrow-band calibrated images of 14 galaxies that form the backbone of the group, mapping Hα+[N II] down to a few 10−17 erg cm−2 s−1 arcsec−2. We estimated the galaxy star formation rate from the Hα fluxes and corrected for Galaxy foreground extinction and [N II] contamination. Results. We detected Hα+[N II] emission in all galaxies. H II regions clearly emerge in late-type galaxies, while in early-type galaxies the Hα+[N II] emission is dominated by [N II], especially in the central regions. However, H II complexes are revealed in four early-type galaxies. Even in the compact group SGC 0414-5559, in the projected centre of Dorado, H II regions are found both throughout the late-type galaxies and in the very outskirts of early-type members. Considering the Dorado group as a whole, we notice that the Hα+[N II] equivalent width, a measure of the specific star formation, increases with morphological type from early- to late-type members, although it remains lower than that observed in similar surveys of spiral galaxies. The star formation rate of the spiral members is in the range of what is observed in similar galaxies surveys (James et al., 2004). However, in three spiral galaxies, NGC 1536, PGC 75125, and IC 2058, the star formation rate is well below the median for their morphological classes. Conversely, the star formation rate of some early-type members tends to be higher than the average derived from Hα+[N II] surveys of this morphological family. Conclusions. We detected Hα+[N II] in all the early-type galaxies observed and half of them show H II regions in well-shaped rings as well as in their outskirts. These findings suggest that early-type galaxies in this group are not dead galaxies: their star formation has not yet shut down. Mechanisms such as gas stripping and gas accretion through galaxy–galaxy interaction seem relevant in modifying star formation in this evolutionary phase of Dorado.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dorado and its member galaxies;Astronomy & Astrophysics;2022-08

2. Dorado and its member galaxies II: A UVIT picture of the NGC 1533 substructure;Journal of Astrophysics and Astronomy;2021-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3