Possible approach to detecting the mysterious Saturnian convective dynamo through gravitational sounding

Author:

Liu ShanhongORCID,Kong DaliORCID,Yan Jianguo

Abstract

Context.Planetary dynamo research is mathematically and numerically difficult. Forward calculations are numerically expensive and subject to much uncertainty in key magnetohydrodynamics parameters. For a gaseous planet such as Saturn, even the precise location of its dynamo and typical convective strength are unknown, which further complicates studies.Aims.We test the idea of inversely probing Saturnian convective dynamo through gravitational sounding, based on the principle that the convective fluid motion can distort the internal density distribution and hence induce the gravitational anomaly.Methods.TheCassiniGrand Finale mission has reported unprecedentedly accurate measurements of the gravitational field of Saturn. An unexplained nonaxisymmetric component of the gravitational field was detected in the data. By performing precise orbit determination (POD) simulations, we studied the possibility that theCassinispacecraft might sense the dynamo-related nonaxisymmetric gravitational signature in the Grand Finale phase. In addition, further extensively simulated missions of various orbit configurations were carried out in order to explore promising mission strategies that might fulfill the objective of detecting the Saturnian convective dynamo.Results.Our POD simulations show that the gravity science carried out in theCassiniGrand Finale mission is insufficient to determine weak nonaxisymmetric gravitational moments because good subspacecraft-point coverage is lacking. The origin of the unexplained Saturnian gravity remains a puzzle. However, it is positively indicated by our simulations that future gravitational sounding is probably able to detect dynamo-related gravity when the subspacecraft-point coverage of a mission is sufficient. We suggest that the mission orbits be purposely designed into a near-polar orientation with a height of about 6000 km at periapsis and a moderate eccentricity of 0.5. A total POD tracking time of five months would enable the detection of the secular nonaxisymmetric gravitational moments that are caused by the deep convective dynamo of Saturn. The orbit strategy can facilitate engineering implementation by keeping the spacecraft marginally away from the Saturn radiation belt throughout the mission.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3