An improved test of the strong equivalence principle with the pulsar in a triple star system

Author:

Voisin G.ORCID,Cognard I.,Freire P. C. C.ORCID,Wex N.ORCID,Guillemot L.ORCID,Desvignes G.ORCID,Kramer M.ORCID,Theureau G.ORCID

Abstract

Context.The gravitational strong equivalence principle (SEP) is a cornerstone of the general theory of relativity (GR). Hence, testing the validity of SEP is of great importance when confronting GR, or its alternatives, with experimental data. Pulsars that are orbited by white dwarf companions provide an excellent laboratory, where the extreme difference in binding energy between neutron stars and white dwarfs allows for precision tests of the SEP via the technique of radio pulsar timing.Aims.To date, the best limit on the validity of SEP under strong-field conditions was obtained with a unique pulsar in a triple stellar system, PSR J0337+1715. We report here on an improvement of this test using an independent data set acquired over a period of 6 years with the Nançay radio telescope. The improvements arise from a uniformly sampled data set, a theoretical analysis, and a treatment that fixes some short-comings in the previously published results, leading to better precision and reliability of the test.Methods.In contrast to the previously published test, we use a different long-term timing data set, developed a new timing model and an independent numerical integration of the motion of the system, and determined the masses and orbital parameters with a different methodology that treats the parameter Δ, describing a possible strong-field SEP violation, identically to all other parameters.Results.We obtain a violation parameter Δ = ( + 0.5 ± 1.8) × 10−6at 95% confidence level, which is compatible with and improves upon the previous study by 30%. This result is statistics-limited and avoids limitation by systematics as previously encountered. We find evidence for red noise in the pulsar spin frequency, which is responsible for up to 10% of the reported uncertainty. We use the improved limit on SEP violation to place constraints on a class of well-studied scalar-tensor theories, in particular we findωBD >  140 000 for the Brans-Dicke parameter. The conservative limits presented here fully take into account current uncertainties in the equation for state of neutron-star matter.

Funder

H2020 European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference108 articles.

1. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

2. GW170817: Measurements of Neutron Star Radii and Equation of State

3. Tests of General Relativity with GW170817

4. Ahnert K., Mulansky M., Simos T. E., et al. 2011, Numerical Analysis and Applied Mathematics ICNAAM 2011: International on Numerical Analysis and Applied Mathematics, Halkidiki, (Greece), 1586

5. Comparison of sampling techniques for Bayesian parameter estimation

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3