Carbon isotopic fractionation in molecular clouds

Author:

Colzi L.ORCID,Sipilä O.ORCID,Roueff E.ORCID,Caselli P.,Fontani F.ORCID

Abstract

Context. Carbon fractionation has been studied from a theoretical point of view with different models of time-dependent chemistry, including both isotope-selective photodissociation and low-temperature isotopic exchange reactions. Aims. Recent chemical models predict that isotopic exchange reactions may lead to a depletion of 13C in nitrile-bearing species, with 12C/13C ratios two times higher than the elemental abundance ratio of 68 in the local interstellar medium. Since the carbon isotopic ratio is commonly used to evaluate the 14N/15N ratios with the double-isotope method, it is important to study carbon fractionation in detail to avoid incorrect assumptions. Methods. In this work, we implemented a gas-grain chemical model with new isotopic exchange reactions and investigated their introduction in the context of dense and cold molecular gas. In particular, we investigated the 12C/13C ratios of HNC, HCN, and CN using a grid of models, with temperatures and densities ranging from 10 to 50 K and 2 × 103 to 2 × 107 cm−3, respectively. Results. We suggest a possible 13C exchange through the 13C + C312C +13CC2 reaction, which does not result in dilution, but rather in 13C enhancement, for molecules that are formed starting from atomic carbon. This effect is efficient in a range of time between the formation of CO and its freeze-out on grains. Furthermore, the parameter-space exploration shows, on average, that the 12C/13C ratios of nitriles are predicted to be a factor 0.8–1.9 different from the local 12C/13C of 68 for high-mass star-forming regions. This result also affects the 14N/15N ratio: a value of 330 obtained with the double-isotope method is predicted to vary in the range 260–630, up to 1150, depending on the physical conditions. Finally, we studied the 12C/13C ratios of nitriles by varying the cosmic-ray ionisation rate, ζ: the 12C/13C ratios increase with ζ because of secondary photons and cosmic-ray reactions.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3