High-resolution, 3D radiative transfer modelling

Author:

Nersesian Angelos,Viaene Sébastien,De Looze Ilse,Baes Maarten,Xilouris Emmanuel M.,Smith Matthew W. L.,Bianchi Simone,Casasola Viviana,Cassarà Letizia P.,Clark Christopher J. R.,Dobbels Wouter,Fritz Jacopo,Galliano Frédéric,Madden Suzanne C.,Mosenkov Aleksandr V.,Trčka Ana

Abstract

Context. Investigating the dust heating mechanisms in galaxies provides a deeper understanding of how the internal energy balance drives their evolution. Over the last decade radiative transfer simulations based on the Monte Carlo method have emphasised the role of the various stellar populations heating the diffuse dust. Beyond the expected heating through ongoing star formation, older stellar populations (≥8 Gyr) and even active galactic nuclei can both contribute energy to the infrared emission of diffuse dust. Aims. In this particular study we examine how the radiation of an external heating source, such as the less massive galaxy NGC 5195 in the M 51 interacting system, could affect the heating of the diffuse dust of its parent galaxy NGC 5194, and vice versa. Our goal is to quantify the exchange of energy between the two galaxies by mapping the 3D distribution of their radiation field. Methods. We used SKIRT, a state-of-the-art 3D Monte Carlo radiative transfer code, to construct the 3D model of the radiation field of M 51, following the methodology defined in the DustPedia framework. In the interest of modelling, the assumed centre-to-centre distance separation between the two galaxies is ∼10 kpc. Results. Our model is able to reproduce the global spectral energy distribution of the system, and it matches the resolved optical and infrared images fairly well. In total, 40.7% of the intrinsic stellar radiation of the combined system is absorbed by dust. Furthermore, we quantify the contribution of the various dust heating sources in the system, and find that the young stellar population of NGC 5194 is the predominant dust-heating agent, with a global heating fraction of 71.2%. Another 23% is provided by the older stellar population of the same galaxy, while the remaining 5.8% has its origin in NGC 5195. Locally, we find that the regions of NGC 5194 closer to NGC 5195 are significantly affected by the radiation field of the latter, with the absorbed energy fraction rising up to 38%. The contribution of NGC 5195 remains under the percentage level in the outskirts of the disc of NGC 5194. This is the first time that the heating of the diffuse dust by a companion galaxy is quantified in a nearby interacting system.

Funder

FP7 Space

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3